MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovi Structured version   Visualization version   GIF version

Theorem f1ovi 6808
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi I :V–1-1-onto→V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 6807 . 2 ( I ↾ V):V–1-1-onto→V
2 reli 5771 . . . 4 Rel I
3 dfrel3 6151 . . . 4 (Rel I ↔ ( I ↾ V) = I )
42, 3mpbi 230 . . 3 ( I ↾ V) = I
5 f1oeq1 6757 . . 3 (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V))
64, 5ax-mp 5 . 2 (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)
71, 6mpbi 230 1 I :V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  Vcvv 3436   I cid 5513  cres 5621  Rel wrel 5624  1-1-ontowf1o 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494
This theorem is referenced by:  ncanth  7307  nregmodelf1o  45113
  Copyright terms: Public domain W3C validator