| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version | ||
| Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| f1ovi | ⊢ I :V–1-1-onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6807 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
| 2 | reli 5771 | . . . 4 ⊢ Rel I | |
| 3 | dfrel3 6151 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ( I ↾ V) = I |
| 5 | f1oeq1 6757 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
| 7 | 1, 6 | mpbi 230 | 1 ⊢ I :V–1-1-onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 I cid 5513 ↾ cres 5621 Rel wrel 5624 –1-1-onto→wf1o 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 |
| This theorem is referenced by: ncanth 7307 nregmodelf1o 45113 |
| Copyright terms: Public domain | W3C validator |