Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version |
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
f1ovi | ⊢ I :V–1-1-onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6698 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
2 | reli 5696 | . . . 4 ⊢ Rel I | |
3 | dfrel3 6061 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
4 | 2, 3 | mpbi 233 | . . 3 ⊢ ( I ↾ V) = I |
5 | f1oeq1 6649 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
7 | 1, 6 | mpbi 233 | 1 ⊢ I :V–1-1-onto→V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 Vcvv 3408 I cid 5454 ↾ cres 5553 Rel wrel 5556 –1-1-onto→wf1o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 |
This theorem is referenced by: ncanth 7168 |
Copyright terms: Public domain | W3C validator |