| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version | ||
| Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| f1ovi | ⊢ I :V–1-1-onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6838 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
| 2 | reli 5789 | . . . 4 ⊢ Rel I | |
| 3 | dfrel3 6171 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ( I ↾ V) = I |
| 5 | f1oeq1 6788 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
| 7 | 1, 6 | mpbi 230 | 1 ⊢ I :V–1-1-onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3447 I cid 5532 ↾ cres 5640 Rel wrel 5643 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: ncanth 7342 nregmodelf1o 45005 |
| Copyright terms: Public domain | W3C validator |