MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovi Structured version   Visualization version   GIF version

Theorem f1ovi 6878
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi I :V–1-1-onto→V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 6877 . 2 ( I ↾ V):V–1-1-onto→V
2 reli 5828 . . . 4 Rel I
3 dfrel3 6202 . . . 4 (Rel I ↔ ( I ↾ V) = I )
42, 3mpbi 229 . . 3 ( I ↾ V) = I
5 f1oeq1 6827 . . 3 (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V))
64, 5ax-mp 5 . 2 (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)
71, 6mpbi 229 1 I :V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  Vcvv 3471   I cid 5575  cres 5680  Rel wrel 5683  1-1-ontowf1o 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555
This theorem is referenced by:  ncanth  7374
  Copyright terms: Public domain W3C validator