Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version |
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
f1ovi | ⊢ I :V–1-1-onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6810 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
2 | reli 5773 | . . . 4 ⊢ Rel I | |
3 | dfrel3 6141 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ( I ↾ V) = I |
5 | f1oeq1 6760 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
7 | 1, 6 | mpbi 229 | 1 ⊢ I :V–1-1-onto→V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Vcvv 3442 I cid 5522 ↾ cres 5627 Rel wrel 5630 –1-1-onto→wf1o 6483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 |
This theorem is referenced by: ncanth 7296 |
Copyright terms: Public domain | W3C validator |