Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version |
Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
f1ovi | ⊢ I :V–1-1-onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6754 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
2 | reli 5736 | . . . 4 ⊢ Rel I | |
3 | dfrel3 6101 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ ( I ↾ V) = I |
5 | f1oeq1 6704 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
7 | 1, 6 | mpbi 229 | 1 ⊢ I :V–1-1-onto→V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3432 I cid 5488 ↾ cres 5591 Rel wrel 5594 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: ncanth 7230 |
Copyright terms: Public domain | W3C validator |