| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ovi | Structured version Visualization version GIF version | ||
| Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| f1ovi | ⊢ I :V–1-1-onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6797 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
| 2 | reli 5764 | . . . 4 ⊢ Rel I | |
| 3 | dfrel3 6142 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ( I ↾ V) = I |
| 5 | f1oeq1 6747 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
| 7 | 1, 6 | mpbi 230 | 1 ⊢ I :V–1-1-onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3434 I cid 5508 ↾ cres 5616 Rel wrel 5619 –1-1-onto→wf1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 |
| This theorem is referenced by: ncanth 7296 nregmodelf1o 45027 |
| Copyright terms: Public domain | W3C validator |