Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnv2 | Structured version Visualization version GIF version |
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cnvcnv2 | ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6095 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | df-res 5601 | . 2 ⊢ (𝐴 ↾ V) = (𝐴 ∩ (V × V)) | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∩ cin 3886 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 |
This theorem is referenced by: dfrel3 6101 rnresv 6104 rescnvcnv 6107 cocnvcnv1 6161 cocnvcnv2 6162 strfv2d 16903 resnonrel 41200 |
Copyright terms: Public domain | W3C validator |