![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnv2 | Structured version Visualization version GIF version |
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cnvcnv2 | ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6223 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | df-res 5712 | . 2 ⊢ (𝐴 ↾ V) = (𝐴 ∩ (V × V)) | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-res 5712 |
This theorem is referenced by: dfrel3 6229 rnresv 6232 rescnvcnv 6235 cocnvcnv1 6288 cocnvcnv2 6289 strfv2d 17249 resnonrel 43554 |
Copyright terms: Public domain | W3C validator |