MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv2 Structured version   Visualization version   GIF version

Theorem cnvcnv2 5828
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 5827 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 5354 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2852 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  Vcvv 3414  cin 3797   × cxp 5340  ccnv 5341  cres 5344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4874  df-opab 4936  df-xp 5348  df-rel 5349  df-cnv 5350  df-res 5354
This theorem is referenced by:  dfrel3  5832  rnresv  5835  rescnvcnv  5838  cocnvcnv1  5887  cocnvcnv2  5888  strfv2d  16268  resnonrel  38732
  Copyright terms: Public domain W3C validator