MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv2 Structured version   Visualization version   GIF version

Theorem cnvcnv2 6187
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 6186 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 5671 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2762 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464  cin 3930   × cxp 5657  ccnv 5658  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-res 5671
This theorem is referenced by:  dfrel3  6192  rnresv  6195  rescnvcnv  6198  cocnvcnv1  6251  cocnvcnv2  6252  strfv2d  17225  resnonrel  43583
  Copyright terms: Public domain W3C validator