MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv2 Structured version   Visualization version   GIF version

Theorem cnvcnv2 6136
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 6135 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 5637 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2768 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3442  cin 3901   × cxp 5623  ccnv 5624  cres 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-xp 5631  df-rel 5632  df-cnv 5633  df-res 5637
This theorem is referenced by:  dfrel3  6141  rnresv  6144  rescnvcnv  6147  cocnvcnv1  6200  cocnvcnv2  6201  strfv2d  17001  resnonrel  41571
  Copyright terms: Public domain W3C validator