MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv2 Structured version   Visualization version   GIF version

Theorem cnvcnv2 6140
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 6139 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 5626 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2757 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cin 3896   × cxp 5612  ccnv 5613  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-res 5626
This theorem is referenced by:  dfrel3  6145  rnresv  6148  rescnvcnv  6151  cocnvcnv1  6205  cocnvcnv2  6206  strfv2d  17112  resnonrel  43684
  Copyright terms: Public domain W3C validator