MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv2 Structured version   Visualization version   GIF version

Theorem cnvcnv2 6213
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 6212 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 5697 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2768 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3480  cin 3950   × cxp 5683  ccnv 5684  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-res 5697
This theorem is referenced by:  dfrel3  6218  rnresv  6221  rescnvcnv  6224  cocnvcnv1  6277  cocnvcnv2  6278  strfv2d  17238  resnonrel  43605
  Copyright terms: Public domain W3C validator