| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnv2 | Structured version Visualization version GIF version | ||
| Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cnvcnv2 | ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6168 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | df-res 5653 | . 2 ⊢ (𝐴 ↾ V) = (𝐴 ∩ (V × V)) | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ◡ccnv 5640 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-res 5653 |
| This theorem is referenced by: dfrel3 6174 rnresv 6177 rescnvcnv 6180 cocnvcnv1 6233 cocnvcnv2 6234 strfv2d 17178 resnonrel 43588 |
| Copyright terms: Public domain | W3C validator |