Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnv2 | Structured version Visualization version GIF version |
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cnvcnv2 | ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6135 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | df-res 5637 | . 2 ⊢ (𝐴 ↾ V) = (𝐴 ∩ (V × V)) | |
3 | 1, 2 | eqtr4i 2768 | 1 ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 Vcvv 3442 ∩ cin 3901 × cxp 5623 ◡ccnv 5624 ↾ cres 5627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-xp 5631 df-rel 5632 df-cnv 5633 df-res 5637 |
This theorem is referenced by: dfrel3 6141 rnresv 6144 rescnvcnv 6147 cocnvcnv1 6200 cocnvcnv2 6201 strfv2d 17001 resnonrel 41571 |
Copyright terms: Public domain | W3C validator |