Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnv2 | Structured version Visualization version GIF version |
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cnvcnv2 | ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6084 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | df-res 5592 | . 2 ⊢ (𝐴 ↾ V) = (𝐴 ∩ (V × V)) | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ◡◡𝐴 = (𝐴 ↾ V) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 × cxp 5578 ◡ccnv 5579 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-res 5592 |
This theorem is referenced by: dfrel3 6090 rnresv 6093 rescnvcnv 6096 cocnvcnv1 6150 cocnvcnv2 6151 strfv2d 16831 resnonrel 41089 |
Copyright terms: Public domain | W3C validator |