MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn4 Structured version   Visualization version   GIF version

Theorem dfrn4 6192
Description: Range defined in terms of image. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrn4 ran 𝐴 = (𝐴 “ V)

Proof of Theorem dfrn4
StepHypRef Expression
1 df-ima 5680 . 2 (𝐴 “ V) = ran (𝐴 ↾ V)
2 rnresv 6191 . 2 ran (𝐴 ↾ V) = ran 𝐴
31, 2eqtr2i 2753 1 ran 𝐴 = (𝐴 “ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3466  ran crn 5668  cres 5669  cima 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680
This theorem is referenced by:  csbrn  6193  dmmpt  6230  gsumpropd2lem  18604  ffsrn  32426
  Copyright terms: Public domain W3C validator