| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrn4 | Structured version Visualization version GIF version | ||
| Description: Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
| Ref | Expression |
|---|---|
| dfrn4 | ⊢ ran 𝐴 = (𝐴 “ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5634 | . 2 ⊢ (𝐴 “ V) = ran (𝐴 ↾ V) | |
| 2 | rnresv 6156 | . 2 ⊢ ran (𝐴 ↾ V) = ran 𝐴 | |
| 3 | 1, 2 | eqtr2i 2757 | 1 ⊢ ran 𝐴 = (𝐴 “ V) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3437 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: csbrn 6158 dmmpt 6195 gsumpropd2lem 18595 ffsrn 32735 |
| Copyright terms: Public domain | W3C validator |