| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrn4 | Structured version Visualization version GIF version | ||
| Description: Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
| Ref | Expression |
|---|---|
| dfrn4 | ⊢ ran 𝐴 = (𝐴 “ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5667 | . 2 ⊢ (𝐴 “ V) = ran (𝐴 ↾ V) | |
| 2 | rnresv 6190 | . 2 ⊢ ran (𝐴 ↾ V) = ran 𝐴 | |
| 3 | 1, 2 | eqtr2i 2759 | 1 ⊢ ran 𝐴 = (𝐴 “ V) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: csbrn 6192 dmmpt 6229 gsumpropd2lem 18657 ffsrn 32706 |
| Copyright terms: Public domain | W3C validator |