Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffsrn Structured version   Visualization version   GIF version

Theorem ffsrn 31693
Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Hypotheses
Ref Expression
ffsrn.z (𝜑𝑍𝑊)
ffsrn.0 (𝜑𝐹𝑉)
ffsrn.1 (𝜑 → Fun 𝐹)
ffsrn.2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
ffsrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem ffsrn
StepHypRef Expression
1 ffsrn.1 . . . . . 6 (𝜑 → Fun 𝐹)
2 dfdm4 5852 . . . . . . 7 dom 𝐹 = ran 𝐹
3 dfrn4 6155 . . . . . . 7 ran 𝐹 = (𝐹 “ V)
42, 3eqtri 2761 . . . . . 6 dom 𝐹 = (𝐹 “ V)
5 df-fn 6500 . . . . . . 7 (𝐹 Fn (𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)))
6 fnresdm 6621 . . . . . . 7 (𝐹 Fn (𝐹 “ V) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
75, 6sylbir 234 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
81, 4, 7sylancl 587 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
9 imaundi 6103 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))
109reseq2i 5935 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍})))
11 undif1 4436 . . . . . . . . 9 ((V ∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍})
12 ssv 3969 . . . . . . . . . 10 {𝑍} ⊆ V
13 ssequn2 4144 . . . . . . . . . 10 ({𝑍} ⊆ V ↔ (V ∪ {𝑍}) = V)
1412, 13mpbi 229 . . . . . . . . 9 (V ∪ {𝑍}) = V
1511, 14eqtri 2761 . . . . . . . 8 ((V ∖ {𝑍}) ∪ {𝑍}) = V
1615imaeq2i 6012 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (𝐹 “ V)
1716reseq2i 5935 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (𝐹 “ V))
18 resundi 5952 . . . . . 6 (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
1910, 17, 183eqtr3i 2769 . . . . 5 (𝐹 ↾ (𝐹 “ V)) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
208, 19eqtr3di 2788 . . . 4 (𝜑𝐹 = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
2120rneqd 5894 . . 3 (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
22 rnun 6099 . . 3 ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍})))
2321, 22eqtrdi 2789 . 2 (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))))
24 ffsrn.0 . . . . . 6 (𝜑𝐹𝑉)
25 ffsrn.z . . . . . 6 (𝜑𝑍𝑊)
26 suppimacnv 8106 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2724, 25, 26syl2anc 585 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
28 ffsrn.2 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
2927, 28eqeltrrd 2835 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
30 cnvexg 7862 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
31 imaexg 7853 . . . . . 6 (𝐹 ∈ V → (𝐹 “ (V ∖ {𝑍})) ∈ V)
3224, 30, 313syl 18 . . . . 5 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ V)
33 cnvimass 6034 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
34 fores 6767 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
351, 33, 34sylancl 587 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
36 fofn 6759 . . . . . 6 ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
3735, 36syl 17 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
38 fnrndomg 10477 . . . . 5 ((𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))))
3932, 37, 38sylc 65 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍})))
40 domfi 9139 . . . 4 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
4129, 39, 40syl2anc 585 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
42 snfi 8991 . . . 4 {𝑍} ∈ Fin
43 df-ima 5647 . . . . . 6 (𝐹 “ (𝐹 “ {𝑍})) = ran (𝐹 ↾ (𝐹 “ {𝑍}))
44 funimacnv 6583 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
451, 44syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
4643, 45eqtr3id 2787 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
47 inss1 4189 . . . . 5 ({𝑍} ∩ ran 𝐹) ⊆ {𝑍}
4846, 47eqsstrdi 3999 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍})
49 ssfi 9120 . . . 4 (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
5042, 48, 49sylancr 588 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
51 unfi 9119 . . 3 ((ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5241, 50, 51syl2anc 585 . 2 (𝜑 → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5323, 52eqeltrd 2834 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  {csn 4587   class class class wbr 5106  ccnv 5633  dom cdm 5634  ran crn 5635  cres 5636  cima 5637  Fun wfun 6491   Fn wfn 6492  ontowfo 6495  (class class class)co 7358   supp csupp 8093  cdom 8884  Fincfn 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-ac2 10404
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-1o 8413  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-fin 8890  df-card 9880  df-acn 9883  df-ac 10057
This theorem is referenced by:  fpwrelmapffslem  31696
  Copyright terms: Public domain W3C validator