Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffsrn Structured version   Visualization version   GIF version

Theorem ffsrn 32741
Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Hypotheses
Ref Expression
ffsrn.z (𝜑𝑍𝑊)
ffsrn.0 (𝜑𝐹𝑉)
ffsrn.1 (𝜑 → Fun 𝐹)
ffsrn.2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
ffsrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem ffsrn
StepHypRef Expression
1 ffsrn.1 . . . . . 6 (𝜑 → Fun 𝐹)
2 dfdm4 5905 . . . . . . 7 dom 𝐹 = ran 𝐹
3 dfrn4 6221 . . . . . . 7 ran 𝐹 = (𝐹 “ V)
42, 3eqtri 2764 . . . . . 6 dom 𝐹 = (𝐹 “ V)
5 df-fn 6563 . . . . . . 7 (𝐹 Fn (𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)))
6 fnresdm 6686 . . . . . . 7 (𝐹 Fn (𝐹 “ V) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
75, 6sylbir 235 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
81, 4, 7sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
9 imaundi 6168 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))
109reseq2i 5993 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍})))
11 undif1 4475 . . . . . . . . 9 ((V ∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍})
12 ssv 4007 . . . . . . . . . 10 {𝑍} ⊆ V
13 ssequn2 4188 . . . . . . . . . 10 ({𝑍} ⊆ V ↔ (V ∪ {𝑍}) = V)
1412, 13mpbi 230 . . . . . . . . 9 (V ∪ {𝑍}) = V
1511, 14eqtri 2764 . . . . . . . 8 ((V ∖ {𝑍}) ∪ {𝑍}) = V
1615imaeq2i 6075 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (𝐹 “ V)
1716reseq2i 5993 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (𝐹 “ V))
18 resundi 6010 . . . . . 6 (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
1910, 17, 183eqtr3i 2772 . . . . 5 (𝐹 ↾ (𝐹 “ V)) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
208, 19eqtr3di 2791 . . . 4 (𝜑𝐹 = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
2120rneqd 5948 . . 3 (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
22 rnun 6164 . . 3 ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍})))
2321, 22eqtrdi 2792 . 2 (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))))
24 ffsrn.0 . . . . . 6 (𝜑𝐹𝑉)
25 ffsrn.z . . . . . 6 (𝜑𝑍𝑊)
26 suppimacnv 8200 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2724, 25, 26syl2anc 584 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
28 ffsrn.2 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
2927, 28eqeltrrd 2841 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
30 cnvexg 7947 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
31 imaexg 7936 . . . . . 6 (𝐹 ∈ V → (𝐹 “ (V ∖ {𝑍})) ∈ V)
3224, 30, 313syl 18 . . . . 5 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ V)
33 cnvimass 6099 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
34 fores 6829 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
351, 33, 34sylancl 586 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
36 fofn 6821 . . . . . 6 ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
3735, 36syl 17 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
38 fnrndomg 10577 . . . . 5 ((𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))))
3932, 37, 38sylc 65 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍})))
40 domfi 9230 . . . 4 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
4129, 39, 40syl2anc 584 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
42 snfi 9084 . . . 4 {𝑍} ∈ Fin
43 df-ima 5697 . . . . . 6 (𝐹 “ (𝐹 “ {𝑍})) = ran (𝐹 ↾ (𝐹 “ {𝑍}))
44 funimacnv 6646 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
451, 44syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
4643, 45eqtr3id 2790 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
47 inss1 4236 . . . . 5 ({𝑍} ∩ ran 𝐹) ⊆ {𝑍}
4846, 47eqsstrdi 4027 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍})
49 ssfi 9214 . . . 4 (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
5042, 48, 49sylancr 587 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
51 unfi 9212 . . 3 ((ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5241, 50, 51syl2anc 584 . 2 (𝜑 → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5323, 52eqeltrd 2840 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  {csn 4625   class class class wbr 5142  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554   Fn wfn 6555  ontowfo 6558  (class class class)co 7432   supp csupp 8186  cdom 8984  Fincfn 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-ac2 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-fin 8990  df-card 9980  df-acn 9983  df-ac 10157
This theorem is referenced by:  fpwrelmapffslem  32744
  Copyright terms: Public domain W3C validator