Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffsrn Structured version   Visualization version   GIF version

Theorem ffsrn 32717
Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Hypotheses
Ref Expression
ffsrn.z (𝜑𝑍𝑊)
ffsrn.0 (𝜑𝐹𝑉)
ffsrn.1 (𝜑 → Fun 𝐹)
ffsrn.2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
ffsrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem ffsrn
StepHypRef Expression
1 ffsrn.1 . . . . . 6 (𝜑 → Fun 𝐹)
2 dfdm4 5841 . . . . . . 7 dom 𝐹 = ran 𝐹
3 dfrn4 6156 . . . . . . 7 ran 𝐹 = (𝐹 “ V)
42, 3eqtri 2756 . . . . . 6 dom 𝐹 = (𝐹 “ V)
5 df-fn 6491 . . . . . . 7 (𝐹 Fn (𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)))
6 fnresdm 6607 . . . . . . 7 (𝐹 Fn (𝐹 “ V) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
75, 6sylbir 235 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
81, 4, 7sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
9 imaundi 6103 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))
109reseq2i 5931 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍})))
11 undif1 4425 . . . . . . . . 9 ((V ∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍})
12 ssv 3955 . . . . . . . . . 10 {𝑍} ⊆ V
13 ssequn2 4138 . . . . . . . . . 10 ({𝑍} ⊆ V ↔ (V ∪ {𝑍}) = V)
1412, 13mpbi 230 . . . . . . . . 9 (V ∪ {𝑍}) = V
1511, 14eqtri 2756 . . . . . . . 8 ((V ∖ {𝑍}) ∪ {𝑍}) = V
1615imaeq2i 6013 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (𝐹 “ V)
1716reseq2i 5931 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (𝐹 “ V))
18 resundi 5948 . . . . . 6 (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
1910, 17, 183eqtr3i 2764 . . . . 5 (𝐹 ↾ (𝐹 “ V)) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
208, 19eqtr3di 2783 . . . 4 (𝜑𝐹 = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
2120rneqd 5884 . . 3 (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
22 rnun 6099 . . 3 ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍})))
2321, 22eqtrdi 2784 . 2 (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))))
24 ffsrn.0 . . . . . 6 (𝜑𝐹𝑉)
25 ffsrn.z . . . . . 6 (𝜑𝑍𝑊)
26 suppimacnv 8112 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2724, 25, 26syl2anc 584 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
28 ffsrn.2 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
2927, 28eqeltrrd 2834 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
30 cnvexg 7862 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
31 imaexg 7851 . . . . . 6 (𝐹 ∈ V → (𝐹 “ (V ∖ {𝑍})) ∈ V)
3224, 30, 313syl 18 . . . . 5 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ V)
33 cnvimass 6037 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
34 fores 6752 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
351, 33, 34sylancl 586 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
36 fofn 6744 . . . . . 6 ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
3735, 36syl 17 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
38 fnrndomg 10436 . . . . 5 ((𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))))
3932, 37, 38sylc 65 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍})))
40 domfi 9107 . . . 4 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
4129, 39, 40syl2anc 584 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
42 snfi 8974 . . . 4 {𝑍} ∈ Fin
43 df-ima 5634 . . . . . 6 (𝐹 “ (𝐹 “ {𝑍})) = ran (𝐹 ↾ (𝐹 “ {𝑍}))
44 funimacnv 6569 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
451, 44syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
4643, 45eqtr3id 2782 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
47 inss1 4186 . . . . 5 ({𝑍} ∩ ran 𝐹) ⊆ {𝑍}
4846, 47eqsstrdi 3975 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍})
49 ssfi 9091 . . . 4 (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
5042, 48, 49sylancr 587 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
51 unfi 9089 . . 3 ((ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5241, 50, 51syl2anc 584 . 2 (𝜑 → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5323, 52eqeltrd 2833 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  {csn 4577   class class class wbr 5095  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Fun wfun 6482   Fn wfn 6483  ontowfo 6486  (class class class)co 7354   supp csupp 8098  cdom 8875  Fincfn 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-ac2 10363
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-fin 8881  df-card 9841  df-acn 9844  df-ac 10016
This theorem is referenced by:  fpwrelmapffslem  32721
  Copyright terms: Public domain W3C validator