Proof of Theorem ffsrn
| Step | Hyp | Ref
| Expression |
| 1 | | ffsrn.1 |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
| 2 | | dfdm4 5862 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
| 3 | | dfrn4 6178 |
. . . . . . 7
⊢ ran ◡𝐹 = (◡𝐹 “ V) |
| 4 | 2, 3 | eqtri 2753 |
. . . . . 6
⊢ dom 𝐹 = (◡𝐹 “ V) |
| 5 | | df-fn 6517 |
. . . . . . 7
⊢ (𝐹 Fn (◡𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (◡𝐹 “ V))) |
| 6 | | fnresdm 6640 |
. . . . . . 7
⊢ (𝐹 Fn (◡𝐹 “ V) → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 7 | 5, 6 | sylbir 235 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ dom 𝐹 = (◡𝐹 “ V)) → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 8 | 1, 4, 7 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 9 | | imaundi 6125 |
. . . . . . 7
⊢ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍})) |
| 10 | 9 | reseq2i 5950 |
. . . . . 6
⊢ (𝐹 ↾ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍}))) |
| 11 | | undif1 4442 |
. . . . . . . . 9
⊢ ((V
∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍}) |
| 12 | | ssv 3974 |
. . . . . . . . . 10
⊢ {𝑍} ⊆ V |
| 13 | | ssequn2 4155 |
. . . . . . . . . 10
⊢ ({𝑍} ⊆ V ↔ (V ∪
{𝑍}) = V) |
| 14 | 12, 13 | mpbi 230 |
. . . . . . . . 9
⊢ (V ∪
{𝑍}) = V |
| 15 | 11, 14 | eqtri 2753 |
. . . . . . . 8
⊢ ((V
∖ {𝑍}) ∪ {𝑍}) = V |
| 16 | 15 | imaeq2i 6032 |
. . . . . . 7
⊢ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (◡𝐹 “ V) |
| 17 | 16 | reseq2i 5950 |
. . . . . 6
⊢ (𝐹 ↾ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (◡𝐹 “ V)) |
| 18 | | resundi 5967 |
. . . . . 6
⊢ (𝐹 ↾ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍}))) = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 19 | 10, 17, 18 | 3eqtr3i 2761 |
. . . . 5
⊢ (𝐹 ↾ (◡𝐹 “ V)) = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 20 | 8, 19 | eqtr3di 2780 |
. . . 4
⊢ (𝜑 → 𝐹 = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 21 | 20 | rneqd 5905 |
. . 3
⊢ (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 22 | | rnun 6121 |
. . 3
⊢ ran
((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 23 | 21, 22 | eqtrdi 2781 |
. 2
⊢ (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 24 | | ffsrn.0 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 25 | | ffsrn.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 26 | | suppimacnv 8156 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 27 | 24, 25, 26 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 28 | | ffsrn.2 |
. . . . 5
⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 29 | 27, 28 | eqeltrrd 2830 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
| 30 | | cnvexg 7903 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) |
| 31 | | imaexg 7892 |
. . . . . 6
⊢ (◡𝐹 ∈ V → (◡𝐹 “ (V ∖ {𝑍})) ∈ V) |
| 32 | 24, 30, 31 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ V) |
| 33 | | cnvimass 6056 |
. . . . . . 7
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 |
| 34 | | fores 6785 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍})))) |
| 35 | 1, 33, 34 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍})))) |
| 36 | | fofn 6777 |
. . . . . 6
⊢ ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍}))) |
| 37 | 35, 36 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍}))) |
| 38 | | fnrndomg 10496 |
. . . . 5
⊢ ((◡𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍})))) |
| 39 | 32, 37, 38 | sylc 65 |
. . . 4
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍}))) |
| 40 | | domfi 9159 |
. . . 4
⊢ (((◡𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
| 41 | 29, 39, 40 | syl2anc 584 |
. . 3
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
| 42 | | snfi 9017 |
. . . 4
⊢ {𝑍} ∈ Fin |
| 43 | | df-ima 5654 |
. . . . . 6
⊢ (𝐹 “ (◡𝐹 “ {𝑍})) = ran (𝐹 ↾ (◡𝐹 “ {𝑍})) |
| 44 | | funimacnv 6600 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 45 | 1, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 46 | 43, 45 | eqtr3id 2779 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 47 | | inss1 4203 |
. . . . 5
⊢ ({𝑍} ∩ ran 𝐹) ⊆ {𝑍} |
| 48 | 46, 47 | eqsstrdi 3994 |
. . . 4
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ⊆ {𝑍}) |
| 49 | | ssfi 9143 |
. . . 4
⊢ (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) |
| 50 | 42, 48, 49 | sylancr 587 |
. . 3
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) |
| 51 | | unfi 9141 |
. . 3
⊢ ((ran
(𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) ∈ Fin) |
| 52 | 41, 50, 51 | syl2anc 584 |
. 2
⊢ (𝜑 → (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) ∈ Fin) |
| 53 | 23, 52 | eqeltrd 2829 |
1
⊢ (𝜑 → ran 𝐹 ∈ Fin) |