Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffsrn Structured version   Visualization version   GIF version

Theorem ffsrn 31064
Description: The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Hypotheses
Ref Expression
ffsrn.z (𝜑𝑍𝑊)
ffsrn.0 (𝜑𝐹𝑉)
ffsrn.1 (𝜑 → Fun 𝐹)
ffsrn.2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
ffsrn (𝜑 → ran 𝐹 ∈ Fin)

Proof of Theorem ffsrn
StepHypRef Expression
1 ffsrn.1 . . . . . 6 (𝜑 → Fun 𝐹)
2 dfdm4 5804 . . . . . . 7 dom 𝐹 = ran 𝐹
3 dfrn4 6105 . . . . . . 7 ran 𝐹 = (𝐹 “ V)
42, 3eqtri 2766 . . . . . 6 dom 𝐹 = (𝐹 “ V)
5 df-fn 6436 . . . . . . 7 (𝐹 Fn (𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)))
6 fnresdm 6551 . . . . . . 7 (𝐹 Fn (𝐹 “ V) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
75, 6sylbir 234 . . . . . 6 ((Fun 𝐹 ∧ dom 𝐹 = (𝐹 “ V)) → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
81, 4, 7sylancl 586 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ V)) = 𝐹)
9 imaundi 6053 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))
109reseq2i 5888 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍})))
11 undif1 4409 . . . . . . . . 9 ((V ∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍})
12 ssv 3945 . . . . . . . . . 10 {𝑍} ⊆ V
13 ssequn2 4117 . . . . . . . . . 10 ({𝑍} ⊆ V ↔ (V ∪ {𝑍}) = V)
1412, 13mpbi 229 . . . . . . . . 9 (V ∪ {𝑍}) = V
1511, 14eqtri 2766 . . . . . . . 8 ((V ∖ {𝑍}) ∪ {𝑍}) = V
1615imaeq2i 5967 . . . . . . 7 (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (𝐹 “ V)
1716reseq2i 5888 . . . . . 6 (𝐹 ↾ (𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (𝐹 “ V))
18 resundi 5905 . . . . . 6 (𝐹 ↾ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐹 “ {𝑍}))) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
1910, 17, 183eqtr3i 2774 . . . . 5 (𝐹 ↾ (𝐹 “ V)) = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍})))
208, 19eqtr3di 2793 . . . 4 (𝜑𝐹 = ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
2120rneqd 5847 . . 3 (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))))
22 rnun 6049 . . 3 ran ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍})))
2321, 22eqtrdi 2794 . 2 (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))))
24 ffsrn.0 . . . . . 6 (𝜑𝐹𝑉)
25 ffsrn.z . . . . . 6 (𝜑𝑍𝑊)
26 suppimacnv 7990 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2724, 25, 26syl2anc 584 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
28 ffsrn.2 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
2927, 28eqeltrrd 2840 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
30 cnvexg 7771 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
31 imaexg 7762 . . . . . 6 (𝐹 ∈ V → (𝐹 “ (V ∖ {𝑍})) ∈ V)
3224, 30, 313syl 18 . . . . 5 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ V)
33 cnvimass 5989 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
34 fores 6698 . . . . . . 7 ((Fun 𝐹 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
351, 33, 34sylancl 586 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))))
36 fofn 6690 . . . . . 6 ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))):(𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
3735, 36syl 17 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})))
38 fnrndomg 10292 . . . . 5 ((𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) Fn (𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))))
3932, 37, 38sylc 65 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍})))
40 domfi 8975 . . . 4 (((𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ≼ (𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
4129, 39, 40syl2anc 584 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
42 snfi 8834 . . . 4 {𝑍} ∈ Fin
43 df-ima 5602 . . . . . 6 (𝐹 “ (𝐹 “ {𝑍})) = ran (𝐹 ↾ (𝐹 “ {𝑍}))
44 funimacnv 6515 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
451, 44syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
4643, 45eqtr3id 2792 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹))
47 inss1 4162 . . . . 5 ({𝑍} ∩ ran 𝐹) ⊆ {𝑍}
4846, 47eqsstrdi 3975 . . . 4 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍})
49 ssfi 8956 . . . 4 (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
5042, 48, 49sylancr 587 . . 3 (𝜑 → ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin)
51 unfi 8955 . . 3 ((ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5241, 50, 51syl2anc 584 . 2 (𝜑 → (ran (𝐹 ↾ (𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (𝐹 “ {𝑍}))) ∈ Fin)
5323, 52eqeltrd 2839 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  ontowfo 6431  (class class class)co 7275   supp csupp 7977  cdom 8731  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-fin 8737  df-card 9697  df-acn 9700  df-ac 9872
This theorem is referenced by:  fpwrelmapffslem  31067
  Copyright terms: Public domain W3C validator