![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version |
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5920 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
2 | dfrn4 6233 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptpreima 6269 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 1, 2, 4 | 3eqtri 2772 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: dmmptss 6272 dmmptg 6273 dmmptd 6725 fvmpti 7028 fvmptss 7041 fvmptss2 7055 mptexgf 7259 tz9.12lem3 9858 cardf2 10012 pmtrsn 19561 00lsp 21002 rgrx0ndm 29629 abrexexd 32537 funcnvmpt 32685 mptctf 32731 issibf 34298 rdgprc0 35757 imageval 35894 dmmptdff 45130 dmmptssf 45139 dmmptdf2 45140 dvcosre 45833 itgsinexplem1 45875 stirlinglem14 46008 fvmptrabdm 47208 |
Copyright terms: Public domain | W3C validator |