MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 6213
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5859 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 6175 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 6211 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2756 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  dmmptss  6214  dmmptg  6215  dmmptd  6663  fvmpti  6967  fvmptss  6980  fvmptss2  6994  mptexgf  7196  tz9.12lem3  9742  cardf2  9896  pmtrsn  19449  00lsp  20887  rgrx0ndm  29521  abrexexd  32438  funcnvmpt  32591  mptctf  32641  issibf  34324  rdgprc0  35781  imageval  35918  dmmptdff  45217  dmmptssf  45226  dmmptdf2  45227  dvcosre  45910  itgsinexplem1  45952  stirlinglem14  46085  fvmptrabdm  47294
  Copyright terms: Public domain W3C validator