| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5838 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 2 | dfrn4 6151 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
| 3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptpreima 6187 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 1, 2, 4 | 3eqtri 2756 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: dmmptss 6190 dmmptg 6191 dmmptd 6627 fvmpti 6929 fvmptss 6942 fvmptss2 6956 mptexgf 7158 tz9.12lem3 9685 cardf2 9839 pmtrsn 19398 00lsp 20884 rgrx0ndm 29539 abrexexd 32453 funcnvmpt 32610 mptctf 32660 issibf 34301 rdgprc0 35767 imageval 35904 dmmptdff 45201 dmmptssf 45210 dmmptdf2 45211 dvcosre 45893 itgsinexplem1 45935 stirlinglem14 46068 fvmptrabdm 47277 |
| Copyright terms: Public domain | W3C validator |