MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 6182
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5830 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 6144 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 6180 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2758 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cmpt 5167  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624
This theorem is referenced by:  dmmptss  6183  dmmptg  6184  dmmptd  6621  fvmpti  6923  fvmptss  6936  fvmptss2  6950  mptexgf  7151  tz9.12lem3  9677  cardf2  9831  pmtrsn  19426  00lsp  20909  rgrx0ndm  29567  abrexexd  32481  funcnvmpt  32641  mptctf  32691  issibf  34338  rdgprc0  35827  imageval  35964  dmmptdff  45260  dmmptssf  45269  dmmptdf2  45270  dvcosre  45950  itgsinexplem1  45992  stirlinglem14  46125  fvmptrabdm  47324
  Copyright terms: Public domain W3C validator