| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5830 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 2 | dfrn4 6144 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
| 3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptpreima 6180 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 1, 2, 4 | 3eqtri 2758 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ↦ cmpt 5167 ◡ccnv 5610 dom cdm 5611 ran crn 5612 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: dmmptss 6183 dmmptg 6184 dmmptd 6621 fvmpti 6923 fvmptss 6936 fvmptss2 6950 mptexgf 7151 tz9.12lem3 9677 cardf2 9831 pmtrsn 19426 00lsp 20909 rgrx0ndm 29567 abrexexd 32481 funcnvmpt 32641 mptctf 32691 issibf 34338 rdgprc0 35827 imageval 35964 dmmptdff 45260 dmmptssf 45269 dmmptdf2 45270 dvcosre 45950 itgsinexplem1 45992 stirlinglem14 46125 fvmptrabdm 47324 |
| Copyright terms: Public domain | W3C validator |