MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 6201
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5849 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 6163 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 6199 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2756 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  dmmptss  6202  dmmptg  6203  dmmptd  6645  fvmpti  6949  fvmptss  6962  fvmptss2  6976  mptexgf  7178  tz9.12lem3  9718  cardf2  9872  pmtrsn  19425  00lsp  20863  rgrx0ndm  29497  abrexexd  32411  funcnvmpt  32564  mptctf  32614  issibf  34297  rdgprc0  35754  imageval  35891  dmmptdff  45190  dmmptssf  45199  dmmptdf2  45200  dvcosre  45883  itgsinexplem1  45925  stirlinglem14  46058  fvmptrabdm  47267
  Copyright terms: Public domain W3C validator