MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 6189
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5838 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 6151 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 6187 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2756 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  dmmptss  6190  dmmptg  6191  dmmptd  6627  fvmpti  6929  fvmptss  6942  fvmptss2  6956  mptexgf  7158  tz9.12lem3  9685  cardf2  9839  pmtrsn  19398  00lsp  20884  rgrx0ndm  29539  abrexexd  32453  funcnvmpt  32610  mptctf  32660  issibf  34301  rdgprc0  35767  imageval  35904  dmmptdff  45201  dmmptssf  45210  dmmptdf2  45211  dvcosre  45893  itgsinexplem1  45935  stirlinglem14  46068  fvmptrabdm  47277
  Copyright terms: Public domain W3C validator