| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5849 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 2 | dfrn4 6163 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
| 3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptpreima 6199 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 1, 2, 4 | 3eqtri 2756 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: dmmptss 6202 dmmptg 6203 dmmptd 6645 fvmpti 6949 fvmptss 6962 fvmptss2 6976 mptexgf 7178 tz9.12lem3 9718 cardf2 9872 pmtrsn 19425 00lsp 20863 rgrx0ndm 29497 abrexexd 32411 funcnvmpt 32564 mptctf 32614 issibf 34297 rdgprc0 35754 imageval 35891 dmmptdff 45190 dmmptssf 45199 dmmptdf2 45200 dvcosre 45883 itgsinexplem1 45925 stirlinglem14 46058 fvmptrabdm 47267 |
| Copyright terms: Public domain | W3C validator |