| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5862 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 2 | dfrn4 6178 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
| 3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | mptpreima 6214 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | 1, 2, 4 | 3eqtri 2757 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: dmmptss 6217 dmmptg 6218 dmmptd 6666 fvmpti 6970 fvmptss 6983 fvmptss2 6997 mptexgf 7199 tz9.12lem3 9749 cardf2 9903 pmtrsn 19456 00lsp 20894 rgrx0ndm 29528 abrexexd 32445 funcnvmpt 32598 mptctf 32648 issibf 34331 rdgprc0 35788 imageval 35925 dmmptdff 45224 dmmptssf 45233 dmmptdf2 45234 dvcosre 45917 itgsinexplem1 45959 stirlinglem14 46092 fvmptrabdm 47298 |
| Copyright terms: Public domain | W3C validator |