MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmpt Structured version   Visualization version   GIF version

Theorem dmmpt 6216
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 5862 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 6178 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 6214 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2757 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  dmmptss  6217  dmmptg  6218  dmmptd  6666  fvmpti  6970  fvmptss  6983  fvmptss2  6997  mptexgf  7199  tz9.12lem3  9749  cardf2  9903  pmtrsn  19456  00lsp  20894  rgrx0ndm  29528  abrexexd  32445  funcnvmpt  32598  mptctf  32648  issibf  34331  rdgprc0  35788  imageval  35925  dmmptdff  45224  dmmptssf  45233  dmmptdf2  45234  dvcosre  45917  itgsinexplem1  45959  stirlinglem14  46092  fvmptrabdm  47298
  Copyright terms: Public domain W3C validator