Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version |
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5735 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
2 | dfrn4 6031 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptpreima 6067 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 1, 2, 4 | 3eqtri 2785 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ↦ cmpt 5112 ◡ccnv 5523 dom cdm 5524 ran crn 5525 “ cima 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-mpt 5113 df-xp 5530 df-rel 5531 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 |
This theorem is referenced by: dmmptss 6070 dmmptg 6071 dmmptd 6476 fvmpti 6758 fvmptss 6771 fvmptss2 6784 mptexgf 6976 tz9.12lem3 9251 cardf2 9405 pmtrsn 18714 00lsp 19821 rgrx0ndm 27482 abrexexd 30376 funcnvmpt 30528 mptctf 30576 issibf 31819 rdgprc0 33285 imageval 33781 dmmptdf 42222 dmmptssf 42236 dmmptdf2 42237 dvcosre 42920 itgsinexplem1 42962 stirlinglem14 43095 fvmptrabdm 44217 |
Copyright terms: Public domain | W3C validator |