Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmpt | Structured version Visualization version GIF version |
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmpt | ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5793 | . 2 ⊢ dom 𝐹 = ran ◡𝐹 | |
2 | dfrn4 6094 | . 2 ⊢ ran ◡𝐹 = (◡𝐹 “ V) | |
3 | dmmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptpreima 6130 | . 2 ⊢ (◡𝐹 “ V) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | 1, 2, 4 | 3eqtri 2770 | 1 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: dmmptss 6133 dmmptg 6134 dmmptd 6562 fvmpti 6856 fvmptss 6869 fvmptss2 6882 mptexgf 7080 tz9.12lem3 9478 cardf2 9632 pmtrsn 19042 00lsp 20158 rgrx0ndm 27863 abrexexd 30755 funcnvmpt 30906 mptctf 30954 issibf 32200 rdgprc0 33675 imageval 34159 dmmptdf 42652 dmmptssf 42664 dmmptdf2 42665 dvcosre 43343 itgsinexplem1 43385 stirlinglem14 43518 fvmptrabdm 44672 |
Copyright terms: Public domain | W3C validator |