MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrn Structured version   Visualization version   GIF version

Theorem csbrn 6095
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrn 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵

Proof of Theorem csbrn
StepHypRef Expression
1 csbima12 5976 . . 3 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵𝐴 / 𝑥V)
2 csbconstg 3847 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
32imaeq2d 5958 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
4 0ima 5975 . . . . . 6 (∅ “ V) = ∅
54eqcomi 2747 . . . . 5 ∅ = (∅ “ V)
6 csbprc 4337 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
76imaeq1d 5957 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (∅ “ 𝐴 / 𝑥V))
8 0ima 5975 . . . . . 6 (∅ “ 𝐴 / 𝑥V) = ∅
97, 8eqtrdi 2795 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = ∅)
106imaeq1d 5957 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵 “ V) = (∅ “ V))
115, 9, 103eqtr4a 2805 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
123, 11pm2.61i 182 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V)
131, 12eqtri 2766 . 2 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵 “ V)
14 dfrn4 6094 . . 3 ran 𝐵 = (𝐵 “ V)
1514csbeq2i 3836 . 2 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥(𝐵 “ V)
16 dfrn4 6094 . 2 ran 𝐴 / 𝑥𝐵 = (𝐴 / 𝑥𝐵 “ V)
1713, 15, 163eqtr4i 2776 1 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  c0 4253  ran crn 5581  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  sbcfg  6582  csbima12gALTVD  42406
  Copyright terms: Public domain W3C validator