MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrn Structured version   Visualization version   GIF version

Theorem csbrn 6223
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrn 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵

Proof of Theorem csbrn
StepHypRef Expression
1 csbima12 6097 . . 3 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵𝐴 / 𝑥V)
2 csbconstg 3918 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
32imaeq2d 6078 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
4 0ima 6096 . . . . . 6 (∅ “ V) = ∅
54eqcomi 2746 . . . . 5 ∅ = (∅ “ V)
6 csbprc 4409 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
76imaeq1d 6077 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (∅ “ 𝐴 / 𝑥V))
8 0ima 6096 . . . . . 6 (∅ “ 𝐴 / 𝑥V) = ∅
97, 8eqtrdi 2793 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = ∅)
106imaeq1d 6077 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵 “ V) = (∅ “ V))
115, 9, 103eqtr4a 2803 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
123, 11pm2.61i 182 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V)
131, 12eqtri 2765 . 2 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵 “ V)
14 dfrn4 6222 . . 3 ran 𝐵 = (𝐵 “ V)
1514csbeq2i 3907 . 2 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥(𝐵 “ V)
16 dfrn4 6222 . 2 ran 𝐴 / 𝑥𝐵 = (𝐴 / 𝑥𝐵 “ V)
1713, 15, 163eqtr4i 2775 1 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3480  csb 3899  c0 4333  ran crn 5686  cima 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698
This theorem is referenced by:  sbcfg  6734  csbima12gALTVD  44917
  Copyright terms: Public domain W3C validator