MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrn Structured version   Visualization version   GIF version

Theorem csbrn 6176
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrn 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵

Proof of Theorem csbrn
StepHypRef Expression
1 csbima12 6050 . . 3 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵𝐴 / 𝑥V)
2 csbconstg 3881 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
32imaeq2d 6031 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
4 0ima 6049 . . . . . 6 (∅ “ V) = ∅
54eqcomi 2738 . . . . 5 ∅ = (∅ “ V)
6 csbprc 4372 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
76imaeq1d 6030 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (∅ “ 𝐴 / 𝑥V))
8 0ima 6049 . . . . . 6 (∅ “ 𝐴 / 𝑥V) = ∅
97, 8eqtrdi 2780 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = ∅)
106imaeq1d 6030 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵 “ V) = (∅ “ V))
115, 9, 103eqtr4a 2790 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
123, 11pm2.61i 182 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V)
131, 12eqtri 2752 . 2 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵 “ V)
14 dfrn4 6175 . . 3 ran 𝐵 = (𝐵 “ V)
1514csbeq2i 3870 . 2 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥(𝐵 “ V)
16 dfrn4 6175 . 2 ran 𝐴 / 𝑥𝐵 = (𝐴 / 𝑥𝐵 “ V)
1713, 15, 163eqtr4i 2762 1 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  c0 4296  ran crn 5639  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  sbcfg  6686  csbima12gALTVD  44886
  Copyright terms: Public domain W3C validator