Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbrn | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbrn | ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbima12 5987 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ V) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) | |
2 | csbconstg 3851 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌V = V) | |
3 | 2 | imaeq2d 5969 | . . . 4 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V)) |
4 | 0ima 5986 | . . . . . 6 ⊢ (∅ “ V) = ∅ | |
5 | 4 | eqcomi 2747 | . . . . 5 ⊢ ∅ = (∅ “ V) |
6 | csbprc 4340 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
7 | 6 | imaeq1d 5968 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (∅ “ ⦋𝐴 / 𝑥⦌V)) |
8 | 0ima 5986 | . . . . . 6 ⊢ (∅ “ ⦋𝐴 / 𝑥⦌V) = ∅ | |
9 | 7, 8 | eqtrdi 2794 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = ∅) |
10 | 6 | imaeq1d 5968 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ V) = (∅ “ V)) |
11 | 5, 9, 10 | 3eqtr4a 2804 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V)) |
12 | 3, 11 | pm2.61i 182 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V) |
13 | 1, 12 | eqtri 2766 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ V) = (⦋𝐴 / 𝑥⦌𝐵 “ V) |
14 | dfrn4 6105 | . . 3 ⊢ ran 𝐵 = (𝐵 “ V) | |
15 | 14 | csbeq2i 3840 | . 2 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌(𝐵 “ V) |
16 | dfrn4 6105 | . 2 ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = (⦋𝐴 / 𝑥⦌𝐵 “ V) | |
17 | 13, 15, 16 | 3eqtr4i 2776 | 1 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⦋csb 3832 ∅c0 4256 ran crn 5590 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: sbcfg 6598 csbima12gALTVD 42517 |
Copyright terms: Public domain | W3C validator |