MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrn Structured version   Visualization version   GIF version

Theorem csbrn 6155
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrn 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵

Proof of Theorem csbrn
StepHypRef Expression
1 csbima12 6032 . . 3 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵𝐴 / 𝑥V)
2 csbconstg 3865 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
32imaeq2d 6013 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
4 0ima 6031 . . . . . 6 (∅ “ V) = ∅
54eqcomi 2742 . . . . 5 ∅ = (∅ “ V)
6 csbprc 4358 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
76imaeq1d 6012 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (∅ “ 𝐴 / 𝑥V))
8 0ima 6031 . . . . . 6 (∅ “ 𝐴 / 𝑥V) = ∅
97, 8eqtrdi 2784 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = ∅)
106imaeq1d 6012 . . . . 5 𝐴 ∈ V → (𝐴 / 𝑥𝐵 “ V) = (∅ “ V))
115, 9, 103eqtr4a 2794 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V))
123, 11pm2.61i 182 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥V) = (𝐴 / 𝑥𝐵 “ V)
131, 12eqtri 2756 . 2 𝐴 / 𝑥(𝐵 “ V) = (𝐴 / 𝑥𝐵 “ V)
14 dfrn4 6154 . . 3 ran 𝐵 = (𝐵 “ V)
1514csbeq2i 3854 . 2 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥(𝐵 “ V)
16 dfrn4 6154 . 2 ran 𝐴 / 𝑥𝐵 = (𝐴 / 𝑥𝐵 “ V)
1713, 15, 163eqtr4i 2766 1 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  c0 4282  ran crn 5620  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  sbcfg  6654  csbima12gALTVD  45013
  Copyright terms: Public domain W3C validator