![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbrn | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbrn | ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbima12 6108 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ V) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) | |
2 | csbconstg 3940 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌V = V) | |
3 | 2 | imaeq2d 6089 | . . . 4 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V)) |
4 | 0ima 6107 | . . . . . 6 ⊢ (∅ “ V) = ∅ | |
5 | 4 | eqcomi 2749 | . . . . 5 ⊢ ∅ = (∅ “ V) |
6 | csbprc 4432 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
7 | 6 | imaeq1d 6088 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (∅ “ ⦋𝐴 / 𝑥⦌V)) |
8 | 0ima 6107 | . . . . . 6 ⊢ (∅ “ ⦋𝐴 / 𝑥⦌V) = ∅ | |
9 | 7, 8 | eqtrdi 2796 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = ∅) |
10 | 6 | imaeq1d 6088 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ V) = (∅ “ V)) |
11 | 5, 9, 10 | 3eqtr4a 2806 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V)) |
12 | 3, 11 | pm2.61i 182 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐵 “ V) |
13 | 1, 12 | eqtri 2768 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ V) = (⦋𝐴 / 𝑥⦌𝐵 “ V) |
14 | dfrn4 6233 | . . 3 ⊢ ran 𝐵 = (𝐵 “ V) | |
15 | 14 | csbeq2i 3929 | . 2 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌(𝐵 “ V) |
16 | dfrn4 6233 | . 2 ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = (⦋𝐴 / 𝑥⦌𝐵 “ V) | |
17 | 13, 15, 16 | 3eqtr4i 2778 | 1 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 ∅c0 4352 ran crn 5701 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: sbcfg 6745 csbima12gALTVD 44868 |
Copyright terms: Public domain | W3C validator |