Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsymrel4 Structured version   Visualization version   GIF version

Theorem dfsymrel4 38596
Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
dfsymrel4 ( SymRel 𝑅 ↔ (𝑅 = 𝑅 ∧ Rel 𝑅))

Proof of Theorem dfsymrel4
StepHypRef Expression
1 dfsymrel2 38594 . 2 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
2 relcnveq 38364 . . 3 (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))
32pm5.32ri 575 . 2 ((𝑅𝑅 ∧ Rel 𝑅) ↔ (𝑅 = 𝑅 ∧ Rel 𝑅))
41, 3bitri 275 1 ( SymRel 𝑅 ↔ (𝑅 = 𝑅 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wss 3897  ccnv 5613  Rel wrel 5619   SymRel wsymrel 38235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-symrel 38589
This theorem is referenced by:  symrelim  38604  idsymrel  38606  epnsymrel  38607
  Copyright terms: Public domain W3C validator