| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfsymrel4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfsymrel4 | ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrel2 38594 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 2 | relcnveq 38364 | . . 3 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | |
| 3 | 2 | pm5.32ri 575 | . 2 ⊢ ((◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅) ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ◡ccnv 5613 Rel wrel 5619 SymRel wsymrel 38235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-symrel 38589 |
| This theorem is referenced by: symrelim 38604 idsymrel 38606 epnsymrel 38607 |
| Copyright terms: Public domain | W3C validator |