| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnexi | Structured version Visualization version GIF version | ||
| Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| difsnexi | ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V) | |
| 2 | snex 5436 | . . . . 5 ⊢ {𝐾} ∈ V | |
| 3 | unexg 7763 | . . . . 5 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) |
| 5 | difsnid 4810 | . . . . . . 7 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) | |
| 6 | 5 | eqcomd 2743 | . . . . . 6 ⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 7 | 6 | eleq1d 2826 | . . . . 5 ⊢ (𝐾 ∈ 𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
| 9 | 4, 8 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V) |
| 10 | 9 | ex 412 | . 2 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
| 11 | difsn 4798 | . . . 4 ⊢ (¬ 𝐾 ∈ 𝑁 → (𝑁 ∖ {𝐾}) = 𝑁) | |
| 12 | 11 | eleq1d 2826 | . . 3 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V)) |
| 13 | 12 | biimpd 229 | . 2 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
| 14 | 10, 13 | pm2.61i 182 | 1 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 {csn 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-sn 4627 df-pr 4629 df-uni 4908 |
| This theorem is referenced by: pmtrdifellem1 19494 pmtrdifellem2 19495 tgdif0 22999 |
| Copyright terms: Public domain | W3C validator |