MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnexi Structured version   Visualization version   GIF version

Theorem difsnexi 7524
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.)
Assertion
Ref Expression
difsnexi ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)

Proof of Theorem difsnexi
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V)
2 snex 5309 . . . . 5 {𝐾} ∈ V
3 unexg 7512 . . . . 5 (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
41, 2, 3sylancl 589 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
5 difsnid 4709 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
65eqcomd 2742 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
76eleq1d 2815 . . . . 5 (𝐾𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
87adantr 484 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
94, 8mpbird 260 . . 3 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V)
109ex 416 . 2 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
11 difsn 4697 . . . 4 𝐾𝑁 → (𝑁 ∖ {𝐾}) = 𝑁)
1211eleq1d 2815 . . 3 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V))
1312biimpd 232 . 2 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
1410, 13pm2.61i 185 1 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2112  Vcvv 3398  cdif 3850  cun 3851  {csn 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528  df-pr 4530  df-uni 4806
This theorem is referenced by:  pmtrdifellem1  18822  pmtrdifellem2  18823  tgdif0  21843
  Copyright terms: Public domain W3C validator