MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnexi Structured version   Visualization version   GIF version

Theorem difsnexi 7697
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.)
Assertion
Ref Expression
difsnexi ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)

Proof of Theorem difsnexi
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V)
2 snex 5375 . . . . 5 {𝐾} ∈ V
3 unexg 7679 . . . . 5 (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
41, 2, 3sylancl 586 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
5 difsnid 4761 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
65eqcomd 2735 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
76eleq1d 2813 . . . . 5 (𝐾𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
87adantr 480 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
94, 8mpbird 257 . . 3 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V)
109ex 412 . 2 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
11 difsn 4749 . . . 4 𝐾𝑁 → (𝑁 ∖ {𝐾}) = 𝑁)
1211eleq1d 2813 . . 3 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V))
1312biimpd 229 . 2 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
1410, 13pm2.61i 182 1 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-sn 4578  df-pr 4580  df-uni 4859
This theorem is referenced by:  pmtrdifellem1  19355  pmtrdifellem2  19356  tgdif0  22877
  Copyright terms: Public domain W3C validator