![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsnexi | Structured version Visualization version GIF version |
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
difsnexi | ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V) | |
2 | snex 5451 | . . . . 5 ⊢ {𝐾} ∈ V | |
3 | unexg 7778 | . . . . 5 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) | |
4 | 1, 2, 3 | sylancl 585 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) |
5 | difsnid 4835 | . . . . . . 7 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) | |
6 | 5 | eqcomd 2746 | . . . . . 6 ⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
7 | 6 | eleq1d 2829 | . . . . 5 ⊢ (𝐾 ∈ 𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
9 | 4, 8 | mpbird 257 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V) |
10 | 9 | ex 412 | . 2 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
11 | difsn 4823 | . . . 4 ⊢ (¬ 𝐾 ∈ 𝑁 → (𝑁 ∖ {𝐾}) = 𝑁) | |
12 | 11 | eleq1d 2829 | . . 3 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V)) |
13 | 12 | biimpd 229 | . 2 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
14 | 10, 13 | pm2.61i 182 | 1 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: pmtrdifellem1 19518 pmtrdifellem2 19519 tgdif0 23020 |
Copyright terms: Public domain | W3C validator |