MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnexi Structured version   Visualization version   GIF version

Theorem difsnexi 7744
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.)
Assertion
Ref Expression
difsnexi ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)

Proof of Theorem difsnexi
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V)
2 snex 5430 . . . . 5 {𝐾} ∈ V
3 unexg 7732 . . . . 5 (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
41, 2, 3sylancl 586 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
5 difsnid 4812 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
65eqcomd 2738 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
76eleq1d 2818 . . . . 5 (𝐾𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
87adantr 481 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
94, 8mpbird 256 . . 3 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V)
109ex 413 . 2 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
11 difsn 4800 . . . 4 𝐾𝑁 → (𝑁 ∖ {𝐾}) = 𝑁)
1211eleq1d 2818 . . 3 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V))
1312biimpd 228 . 2 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
1410, 13pm2.61i 182 1 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474  cdif 3944  cun 3945  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630  df-uni 4908
This theorem is referenced by:  pmtrdifellem1  19338  pmtrdifellem2  19339  tgdif0  22486
  Copyright terms: Public domain W3C validator