MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnexi Structured version   Visualization version   GIF version

Theorem difsnexi 7694
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.)
Assertion
Ref Expression
difsnexi ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)

Proof of Theorem difsnexi
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V)
2 snex 5372 . . . . 5 {𝐾} ∈ V
3 unexg 7676 . . . . 5 (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
41, 2, 3sylancl 586 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)
5 difsnid 4759 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
65eqcomd 2737 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
76eleq1d 2816 . . . . 5 (𝐾𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
87adantr 480 . . . 4 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V))
94, 8mpbird 257 . . 3 ((𝐾𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V)
109ex 412 . 2 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
11 difsn 4747 . . . 4 𝐾𝑁 → (𝑁 ∖ {𝐾}) = 𝑁)
1211eleq1d 2816 . . 3 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V))
1312biimpd 229 . 2 𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V))
1410, 13pm2.61i 182 1 ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by:  pmtrdifellem1  19388  pmtrdifellem2  19389  tgdif0  22907
  Copyright terms: Public domain W3C validator