Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnexi | Structured version Visualization version GIF version |
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
difsnexi | ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∖ {𝐾}) ∈ V) | |
2 | snex 5354 | . . . . 5 ⊢ {𝐾} ∈ V | |
3 | unexg 7599 | . . . . 5 ⊢ (((𝑁 ∖ {𝐾}) ∈ V ∧ {𝐾} ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) | |
4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V) |
5 | difsnid 4743 | . . . . . . 7 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) | |
6 | 5 | eqcomd 2744 | . . . . . 6 ⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
7 | 6 | eleq1d 2823 | . . . . 5 ⊢ (𝐾 ∈ 𝑁 → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → (𝑁 ∈ V ↔ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ∈ V)) |
9 | 4, 8 | mpbird 256 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ (𝑁 ∖ {𝐾}) ∈ V) → 𝑁 ∈ V) |
10 | 9 | ex 413 | . 2 ⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
11 | difsn 4731 | . . . 4 ⊢ (¬ 𝐾 ∈ 𝑁 → (𝑁 ∖ {𝐾}) = 𝑁) | |
12 | 11 | eleq1d 2823 | . . 3 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V ↔ 𝑁 ∈ V)) |
13 | 12 | biimpd 228 | . 2 ⊢ (¬ 𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V)) |
14 | 10, 13 | pm2.61i 182 | 1 ⊢ ((𝑁 ∖ {𝐾}) ∈ V → 𝑁 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: pmtrdifellem1 19084 pmtrdifellem2 19085 tgdif0 22142 |
Copyright terms: Public domain | W3C validator |