Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncld Structured version   Visualization version   GIF version

Theorem uncld 21646
 Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem uncld
StepHypRef Expression
1 difundi 4206 . . 3 ( 𝐽 ∖ (𝐴𝐵)) = (( 𝐽𝐴) ∩ ( 𝐽𝐵))
2 cldrcl 21631 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3 eqid 2798 . . . . 5 𝐽 = 𝐽
43cldopn 21636 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → ( 𝐽𝐴) ∈ 𝐽)
53cldopn 21636 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
6 inopn 21504 . . . 4 ((𝐽 ∈ Top ∧ ( 𝐽𝐴) ∈ 𝐽 ∧ ( 𝐽𝐵) ∈ 𝐽) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
72, 4, 5, 6syl2an3an 1419 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
81, 7eqeltrid 2894 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽)
93cldss 21634 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
103cldss 21634 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
119, 10anim12i 615 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 𝐽𝐵 𝐽))
12 unss 4111 . . . 4 ((𝐴 𝐽𝐵 𝐽) ↔ (𝐴𝐵) ⊆ 𝐽)
1311, 12sylib 221 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ⊆ 𝐽)
143iscld2 21633 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
152, 13, 14syl2an2r 684 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
168, 15mpbird 260 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∪ cuni 4800  ‘cfv 6324  Topctop 21498  Clsdccld 21621 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-top 21499  df-cld 21624 This theorem is referenced by:  iscldtop  21700  paste  21899  lpcls  21969  dvasin  35138  dvacos  35139  dvreasin  35140  dvreacos  35141
 Copyright terms: Public domain W3C validator