MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncld Structured version   Visualization version   GIF version

Theorem uncld 22954
Description: The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
uncld ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))

Proof of Theorem uncld
StepHypRef Expression
1 difundi 4240 . . 3 ( 𝐽 ∖ (𝐴𝐵)) = (( 𝐽𝐴) ∩ ( 𝐽𝐵))
2 cldrcl 22939 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3 eqid 2731 . . . . 5 𝐽 = 𝐽
43cldopn 22944 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → ( 𝐽𝐴) ∈ 𝐽)
53cldopn 22944 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
6 inopn 22812 . . . 4 ((𝐽 ∈ Top ∧ ( 𝐽𝐴) ∈ 𝐽 ∧ ( 𝐽𝐵) ∈ 𝐽) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
72, 4, 5, 6syl2an3an 1424 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (( 𝐽𝐴) ∩ ( 𝐽𝐵)) ∈ 𝐽)
81, 7eqeltrid 2835 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽)
93cldss 22942 . . . . 5 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
103cldss 22942 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
119, 10anim12i 613 . . . 4 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 𝐽𝐵 𝐽))
12 unss 4140 . . . 4 ((𝐴 𝐽𝐵 𝐽) ↔ (𝐴𝐵) ⊆ 𝐽)
1311, 12sylib 218 . . 3 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ⊆ 𝐽)
143iscld2 22941 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
152, 13, 14syl2an2r 685 . 2 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝐵) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐴𝐵)) ∈ 𝐽))
168, 15mpbird 257 1 ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  cdif 3899  cun 3900  cin 3901  wss 3902   cuni 4859  cfv 6481  Topctop 22806  Clsdccld 22929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-top 22807  df-cld 22932
This theorem is referenced by:  iscldtop  23008  paste  23207  lpcls  23277  dvasin  37743  dvacos  37744  dvreasin  37745  dvreacos  37746
  Copyright terms: Public domain W3C validator