Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsun Structured version   Visualization version   GIF version

Theorem clsun 36316
Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsun.1 𝑋 = 𝐽
Assertion
Ref Expression
clsun ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))

Proof of Theorem clsun
StepHypRef Expression
1 difundi 4253 . . . . . 6 (𝑋 ∖ (𝐴𝐵)) = ((𝑋𝐴) ∩ (𝑋𝐵))
21fveq2i 6861 . . . . 5 ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵)))
3 difss 4099 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
4 difss 4099 . . . . . . 7 (𝑋𝐵) ⊆ 𝑋
5 clsun.1 . . . . . . . 8 𝑋 = 𝐽
65ntrin 22948 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋 ∧ (𝑋𝐵) ⊆ 𝑋) → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
73, 4, 6mp3an23 1455 . . . . . 6 (𝐽 ∈ Top → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
873ad2ant1 1133 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
92, 8eqtrid 2776 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
10 simp1 1136 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → 𝐽 ∈ Top)
11 unss 4153 . . . . . . 7 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
1211biimpi 216 . . . . . 6 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
13123adant1 1130 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
145ntrdif 22939 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))))
1510, 13, 14syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))))
165ntrdif 22939 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
17163adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
185ntrdif 22939 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
19183adant2 1131 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
2017, 19ineq12d 4184 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵))))
21 difundi 4253 . . . . 5 (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
2220, 21eqtr4di 2782 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))))
239, 15, 223eqtr3d 2772 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))))
2423difeq2d 4089 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))))
255clscld 22934 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽))
2610, 13, 25syl2anc 584 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽))
275cldss 22916 . . . 4 (((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋)
2826, 27syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋)
29 dfss4 4232 . . 3 (((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = ((cls‘𝐽)‘(𝐴𝐵)))
3028, 29sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = ((cls‘𝐽)‘(𝐴𝐵)))
315clsss3 22946 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
32313adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
335clsss3 22946 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋)
34333adant2 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋)
3532, 34jca 511 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋))
36 unss 4153 . . . 4 ((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋)
37 dfss4 4232 . . . 4 ((((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
3836, 37bitri 275 . . 3 ((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
3935, 38sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
4024, 30, 393eqtr3d 2772 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  wss 3914   cuni 4871  cfv 6511  Topctop 22780  Clsdccld 22903  intcnt 22904  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-ntr 22907  df-cls 22908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator