Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsun Structured version   Visualization version   GIF version

Theorem clsun 36294
Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clsun.1 𝑋 = 𝐽
Assertion
Ref Expression
clsun ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))

Proof of Theorem clsun
StepHypRef Expression
1 difundi 4309 . . . . . 6 (𝑋 ∖ (𝐴𝐵)) = ((𝑋𝐴) ∩ (𝑋𝐵))
21fveq2i 6923 . . . . 5 ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵)))
3 difss 4159 . . . . . . 7 (𝑋𝐴) ⊆ 𝑋
4 difss 4159 . . . . . . 7 (𝑋𝐵) ⊆ 𝑋
5 clsun.1 . . . . . . . 8 𝑋 = 𝐽
65ntrin 23090 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋 ∧ (𝑋𝐵) ⊆ 𝑋) → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
73, 4, 6mp3an23 1453 . . . . . 6 (𝐽 ∈ Top → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
873ad2ant1 1133 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘((𝑋𝐴) ∩ (𝑋𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
92, 8eqtrid 2792 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))))
10 simp1 1136 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → 𝐽 ∈ Top)
11 unss 4213 . . . . . . 7 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
1211biimpi 216 . . . . . 6 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
13123adant1 1130 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
145ntrdif 23081 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))))
1510, 13, 14syl2anc 583 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))))
165ntrdif 23081 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
17163adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
185ntrdif 23081 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
19183adant2 1131 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝑋𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
2017, 19ineq12d 4242 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵))))
21 difundi 4309 . . . . 5 (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵)))
2220, 21eqtr4di 2798 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘(𝑋𝐴)) ∩ ((int‘𝐽)‘(𝑋𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))))
239, 15, 223eqtr3d 2788 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))))
2423difeq2d 4149 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))))
255clscld 23076 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽))
2610, 13, 25syl2anc 583 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽))
275cldss 23058 . . . 4 (((cls‘𝐽)‘(𝐴𝐵)) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋)
2826, 27syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋)
29 dfss4 4288 . . 3 (((cls‘𝐽)‘(𝐴𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = ((cls‘𝐽)‘(𝐴𝐵)))
3028, 29sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴𝐵)))) = ((cls‘𝐽)‘(𝐴𝐵)))
315clsss3 23088 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
32313adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
335clsss3 23088 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋)
34333adant2 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋)
3532, 34jca 511 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋))
36 unss 4213 . . . 4 ((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋)
37 dfss4 4288 . . . 4 ((((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
3836, 37bitri 275 . . 3 ((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
3935, 38sylib 218 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
4024, 30, 393eqtr3d 2788 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((cls‘𝐽)‘(𝐴𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  intcnt 23046  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator