Proof of Theorem clsun
| Step | Hyp | Ref
| Expression |
| 1 | | difundi 4290 |
. . . . . 6
⊢ (𝑋 ∖ (𝐴 ∪ 𝐵)) = ((𝑋 ∖ 𝐴) ∩ (𝑋 ∖ 𝐵)) |
| 2 | 1 | fveq2i 6909 |
. . . . 5
⊢
((int‘𝐽)‘(𝑋 ∖ (𝐴 ∪ 𝐵))) = ((int‘𝐽)‘((𝑋 ∖ 𝐴) ∩ (𝑋 ∖ 𝐵))) |
| 3 | | difss 4136 |
. . . . . . 7
⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 |
| 4 | | difss 4136 |
. . . . . . 7
⊢ (𝑋 ∖ 𝐵) ⊆ 𝑋 |
| 5 | | clsun.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
| 6 | 5 | ntrin 23069 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋 ∧ (𝑋 ∖ 𝐵) ⊆ 𝑋) → ((int‘𝐽)‘((𝑋 ∖ 𝐴) ∩ (𝑋 ∖ 𝐵))) = (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵)))) |
| 7 | 3, 4, 6 | mp3an23 1455 |
. . . . . 6
⊢ (𝐽 ∈ Top →
((int‘𝐽)‘((𝑋 ∖ 𝐴) ∩ (𝑋 ∖ 𝐵))) = (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵)))) |
| 8 | 7 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘((𝑋 ∖ 𝐴) ∩ (𝑋 ∖ 𝐵))) = (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵)))) |
| 9 | 2, 8 | eqtrid 2789 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴 ∪ 𝐵))) = (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵)))) |
| 10 | | simp1 1137 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 11 | | unss 4190 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 12 | 11 | biimpi 216 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 13 | 12 | 3adant1 1131 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
| 14 | 5 | ntrdif 23060 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴 ∪ 𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 15 | 10, 13, 14 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ (𝐴 ∪ 𝐵))) = (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵)))) |
| 16 | 5 | ntrdif 23060 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
| 17 | 16 | 3adant3 1133 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
| 18 | 5 | ntrdif 23060 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵))) |
| 19 | 18 | 3adant2 1132 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐵)) = (𝑋 ∖ ((cls‘𝐽)‘𝐵))) |
| 20 | 17, 19 | ineq12d 4221 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵)))) |
| 21 | | difundi 4290 |
. . . . 5
⊢ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) = ((𝑋 ∖ ((cls‘𝐽)‘𝐴)) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝐵))) |
| 22 | 20, 21 | eqtr4di 2795 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((int‘𝐽)‘(𝑋 ∖ 𝐴)) ∩ ((int‘𝐽)‘(𝑋 ∖ 𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) |
| 23 | 9, 15, 22 | 3eqtr3d 2785 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵))) = (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) |
| 24 | 23 | difeq2d 4126 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵)))) = (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))))) |
| 25 | 5 | clscld 23055 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ∈ (Clsd‘𝐽)) |
| 26 | 10, 13, 25 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ∈ (Clsd‘𝐽)) |
| 27 | 5 | cldss 23037 |
. . . 4
⊢
(((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ⊆ 𝑋) |
| 28 | 26, 27 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ⊆ 𝑋) |
| 29 | | dfss4 4269 |
. . 3
⊢
(((cls‘𝐽)‘(𝐴 ∪ 𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵)))) = ((cls‘𝐽)‘(𝐴 ∪ 𝐵))) |
| 30 | 28, 29 | sylib 218 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘(𝐴 ∪ 𝐵)))) = ((cls‘𝐽)‘(𝐴 ∪ 𝐵))) |
| 31 | 5 | clsss3 23067 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 32 | 31 | 3adant3 1133 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
| 33 | 5 | clsss3 23067 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋) |
| 34 | 33 | 3adant2 1132 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘𝐵) ⊆ 𝑋) |
| 35 | 32, 34 | jca 511 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋)) |
| 36 | | unss 4190 |
. . . 4
⊢
((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋) |
| 37 | | dfss4 4269 |
. . . 4
⊢
((((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)) ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) |
| 38 | 36, 37 | bitri 275 |
. . 3
⊢
((((cls‘𝐽)‘𝐴) ⊆ 𝑋 ∧ ((cls‘𝐽)‘𝐵) ⊆ 𝑋) ↔ (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) |
| 39 | 35, 38 | sylib 218 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵)))) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) |
| 40 | 24, 30, 39 | 3eqtr3d 2785 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((cls‘𝐽)‘(𝐴 ∪ 𝐵)) = (((cls‘𝐽)‘𝐴) ∪ ((cls‘𝐽)‘𝐵))) |