![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inmbl | Structured version Visualization version GIF version |
Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
inmbl | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundi 4223 | . . 3 ⊢ (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵))) | |
2 | mblss 24775 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
3 | dfss4 4202 | . . . . 5 ⊢ (𝐴 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴) |
5 | mblss 24775 | . . . . 5 ⊢ (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ) | |
6 | dfss4 4202 | . . . . 5 ⊢ (𝐵 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ (𝐵 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵) |
8 | 4, 7 | ineqan12d 4158 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵))) = (𝐴 ∩ 𝐵)) |
9 | 1, 8 | eqtrid 2788 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = (𝐴 ∩ 𝐵)) |
10 | cmmbl 24778 | . . . 4 ⊢ (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol) | |
11 | cmmbl 24778 | . . . 4 ⊢ (𝐵 ∈ dom vol → (ℝ ∖ 𝐵) ∈ dom vol) | |
12 | unmbl 24781 | . . . 4 ⊢ (((ℝ ∖ 𝐴) ∈ dom vol ∧ (ℝ ∖ 𝐵) ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol) | |
13 | 10, 11, 12 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol) |
14 | cmmbl 24778 | . . 3 ⊢ (((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol) |
16 | 9, 15 | eqeltrrd 2838 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3893 ∪ cun 3894 ∩ cin 3895 ⊆ wss 3896 dom cdm 5607 ℝcr 10949 volcvol 24707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-q 12768 df-rp 12810 df-ioo 13162 df-ico 13164 df-icc 13165 df-fz 13319 df-fl 13591 df-seq 13801 df-exp 13862 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-ovol 24708 df-vol 24709 |
This theorem is referenced by: difmbl 24787 volinun 24790 uniioombllem4 24830 subopnmbl 24848 volsup2 24849 volcn 24850 volivth 24851 mbfid 24879 ismbfd 24883 mbfres 24888 mbfmax 24893 mbfimaopnlem 24899 mbfimaopn2 24901 mbfaddlem 24904 mbfadd 24905 mbfsub 24906 i1fadd 24939 i1fmul 24940 itg1addlem2 24941 itg1addlem4 24943 itg1addlem4OLD 24944 itg1addlem5 24945 i1fres 24950 itg1climres 24959 mbfi1fseqlem4 24963 mbfmul 24971 itg2monolem1 24995 itg2cnlem2 25007 mbfposadd 35901 itg2addnclem2 35906 ftc1anclem6 35932 |
Copyright terms: Public domain | W3C validator |