MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inmbl Structured version   Visualization version   GIF version

Theorem inmbl 24137
Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
inmbl ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)

Proof of Theorem inmbl
StepHypRef Expression
1 difundi 4256 . . 3 (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵)))
2 mblss 24126 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3 dfss4 4235 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴)
42, 3sylib 220 . . . 4 (𝐴 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴)
5 mblss 24126 . . . . 5 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
6 dfss4 4235 . . . . 5 (𝐵 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵)
75, 6sylib 220 . . . 4 (𝐵 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵)
84, 7ineqan12d 4191 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵))) = (𝐴𝐵))
91, 8syl5eq 2868 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = (𝐴𝐵))
10 cmmbl 24129 . . . 4 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
11 cmmbl 24129 . . . 4 (𝐵 ∈ dom vol → (ℝ ∖ 𝐵) ∈ dom vol)
12 unmbl 24132 . . . 4 (((ℝ ∖ 𝐴) ∈ dom vol ∧ (ℝ ∖ 𝐵) ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol)
1310, 11, 12syl2an 597 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol)
14 cmmbl 24129 . . 3 (((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol)
1513, 14syl 17 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol)
169, 15eqeltrrd 2914 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3933  cun 3934  cin 3935  wss 3936  dom cdm 5550  cr 10530  volcvol 24058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-ovol 24059  df-vol 24060
This theorem is referenced by:  difmbl  24138  volinun  24141  uniioombllem4  24181  subopnmbl  24199  volsup2  24200  volcn  24201  volivth  24202  mbfid  24230  ismbfd  24234  mbfres  24239  mbfmax  24244  mbfimaopnlem  24250  mbfimaopn2  24252  mbfaddlem  24255  mbfadd  24256  mbfsub  24257  i1fadd  24290  i1fmul  24291  itg1addlem2  24292  itg1addlem4  24294  itg1addlem5  24295  i1fres  24300  itg1climres  24309  mbfi1fseqlem4  24313  mbfmul  24321  itg2monolem1  24345  itg2cnlem2  24357  mbfposadd  34933  itg2addnclem2  34938  ftc1anclem6  34966
  Copyright terms: Public domain W3C validator