MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inmbl Structured version   Visualization version   GIF version

Theorem inmbl 25415
Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
inmbl ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)

Proof of Theorem inmbl
StepHypRef Expression
1 difundi 4272 . . 3 (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵)))
2 mblss 25404 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3 dfss4 4251 . . . . 5 (𝐴 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴)
42, 3sylib 217 . . . 4 (𝐴 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐴)) = 𝐴)
5 mblss 25404 . . . . 5 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
6 dfss4 4251 . . . . 5 (𝐵 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵)
75, 6sylib 217 . . . 4 (𝐵 ∈ dom vol → (ℝ ∖ (ℝ ∖ 𝐵)) = 𝐵)
84, 7ineqan12d 4207 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ (ℝ ∖ 𝐴)) ∩ (ℝ ∖ (ℝ ∖ 𝐵))) = (𝐴𝐵))
91, 8eqtrid 2776 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) = (𝐴𝐵))
10 cmmbl 25407 . . . 4 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
11 cmmbl 25407 . . . 4 (𝐵 ∈ dom vol → (ℝ ∖ 𝐵) ∈ dom vol)
12 unmbl 25410 . . . 4 (((ℝ ∖ 𝐴) ∈ dom vol ∧ (ℝ ∖ 𝐵) ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol)
1310, 11, 12syl2an 595 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol)
14 cmmbl 25407 . . 3 (((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵)) ∈ dom vol → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol)
1513, 14syl 17 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (ℝ ∖ ((ℝ ∖ 𝐴) ∪ (ℝ ∖ 𝐵))) ∈ dom vol)
169, 15eqeltrrd 2826 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cdif 3938  cun 3939  cin 3940  wss 3941  dom cdm 5667  cr 11106  volcvol 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-ioo 13329  df-ico 13331  df-icc 13332  df-fz 13486  df-fl 13758  df-seq 13968  df-exp 14029  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-ovol 25337  df-vol 25338
This theorem is referenced by:  difmbl  25416  volinun  25419  uniioombllem4  25459  subopnmbl  25477  volsup2  25478  volcn  25479  volivth  25480  mbfid  25508  ismbfd  25512  mbfres  25517  mbfmax  25522  mbfimaopnlem  25528  mbfimaopn2  25530  mbfaddlem  25533  mbfadd  25534  mbfsub  25535  i1fadd  25568  i1fmul  25569  itg1addlem2  25570  itg1addlem4  25572  itg1addlem4OLD  25573  itg1addlem5  25574  i1fres  25579  itg1climres  25588  mbfi1fseqlem4  25592  mbfmul  25600  itg2monolem1  25624  itg2cnlem2  25636  mbfposadd  37039  itg2addnclem2  37044  ftc1anclem6  37070
  Copyright terms: Public domain W3C validator