Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem8 Structured version   Visualization version   GIF version

Theorem poimirlem8 35712
Description: Lemma for poimir 35737, establishing that away from the opposite vertex the walks in poimirlem9 35713 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem9.2 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
poimirlem9.3 (𝜑𝑈𝑆)
Assertion
Ref Expression
poimirlem8 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑈,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑡,𝑈   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem8
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimirlem9.3 . . . . . . . 8 (𝜑𝑈𝑆)
2 elrabi 3611 . . . . . . . . 9 (𝑈 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3 poimirlem22.s . . . . . . . . 9 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
42, 3eleq2s 2857 . . . . . . . 8 (𝑈𝑆𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
51, 4syl 17 . . . . . . 7 (𝜑𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
6 xp1st 7836 . . . . . . 7 (𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑈) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
75, 6syl 17 . . . . . 6 (𝜑 → (1st𝑈) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
8 xp2nd 7837 . . . . . 6 ((1st𝑈) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
97, 8syl 17 . . . . 5 (𝜑 → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
10 fvex 6769 . . . . . 6 (2nd ‘(1st𝑈)) ∈ V
11 f1oeq1 6688 . . . . . 6 (𝑓 = (2nd ‘(1st𝑈)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁)))
1210, 11elab 3602 . . . . 5 ((2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
139, 12sylib 217 . . . 4 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
14 f1ofn 6701 . . . 4 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)) Fn (1...𝑁))
1513, 14syl 17 . . 3 (𝜑 → (2nd ‘(1st𝑈)) Fn (1...𝑁))
16 difss 4062 . . 3 ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)
17 fnssres 6539 . . 3 (((2nd ‘(1st𝑈)) Fn (1...𝑁) ∧ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)) → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
1815, 16, 17sylancl 585 . 2 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
19 poimirlem9.1 . . . . . . . 8 (𝜑𝑇𝑆)
20 elrabi 3611 . . . . . . . . 9 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2120, 3eleq2s 2857 . . . . . . . 8 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2219, 21syl 17 . . . . . . 7 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
23 xp1st 7836 . . . . . . 7 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2422, 23syl 17 . . . . . 6 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
25 xp2nd 7837 . . . . . 6 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2624, 25syl 17 . . . . 5 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
27 fvex 6769 . . . . . 6 (2nd ‘(1st𝑇)) ∈ V
28 f1oeq1 6688 . . . . . 6 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
2927, 28elab 3602 . . . . 5 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
3026, 29sylib 217 . . . 4 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
31 f1ofn 6701 . . . 4 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
3230, 31syl 17 . . 3 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
33 fnssres 6539 . . 3 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)) → ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
3432, 16, 33sylancl 585 . 2 (𝜑 → ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
35 poimirlem9.2 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
36 fzp1elp1 13238 . . . . . . . . . . . 12 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
38 poimir.0 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
3938nncnd 11919 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
40 npcan1 11330 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
4139, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
4241oveq2d 7271 . . . . . . . . . . 11 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
4337, 42eleqtrd 2841 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ∈ (1...𝑁))
44 fzsplit 13211 . . . . . . . . . 10 (((2nd𝑇) + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
4543, 44syl 17 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
4645difeq1d 4052 . . . . . . . 8 (𝜑 → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
47 difundir 4211 . . . . . . . . 9 (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
48 elfznn 13214 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
4935, 48syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) ∈ ℕ)
5049nncnd 11919 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑇) ∈ ℂ)
51 npcan1 11330 . . . . . . . . . . . . . . . 16 ((2nd𝑇) ∈ ℂ → (((2nd𝑇) − 1) + 1) = (2nd𝑇))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd𝑇) − 1) + 1) = (2nd𝑇))
53 nnuz 12550 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
5449, 53eleqtrdi 2849 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) ∈ (ℤ‘1))
5552, 54eqeltrd 2839 . . . . . . . . . . . . . 14 (𝜑 → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘1))
5649nnzd 12354 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd𝑇) ∈ ℤ)
57 peano2zm 12293 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℤ → ((2nd𝑇) − 1) ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) − 1) ∈ ℤ)
59 uzid 12526 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) − 1) ∈ ℤ → ((2nd𝑇) − 1) ∈ (ℤ‘((2nd𝑇) − 1)))
60 peano2uz 12570 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) − 1) ∈ (ℤ‘((2nd𝑇) − 1)) → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6252, 61eqeltrrd 2840 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) ∈ (ℤ‘((2nd𝑇) − 1)))
63 peano2uz 12570 . . . . . . . . . . . . . . 15 ((2nd𝑇) ∈ (ℤ‘((2nd𝑇) − 1)) → ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6462, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
65 fzsplit2 13210 . . . . . . . . . . . . . 14 (((((2nd𝑇) − 1) + 1) ∈ (ℤ‘1) ∧ ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1))) → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))))
6655, 64, 65syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))))
6752oveq1d 7270 . . . . . . . . . . . . . . 15 (𝜑 → ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1)) = ((2nd𝑇)...((2nd𝑇) + 1)))
68 fzpr 13240 . . . . . . . . . . . . . . . 16 ((2nd𝑇) ∈ ℤ → ((2nd𝑇)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
6956, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑇)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
7067, 69eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
7170uneq2d 4093 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))) = ((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}))
7266, 71eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}))
7372difeq1d 4052 . . . . . . . . . . 11 (𝜑 → ((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
7449nnred 11918 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) ∈ ℝ)
7574ltm1d 11837 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) − 1) < (2nd𝑇))
7658zred 12355 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) − 1) ∈ ℝ)
7776, 74ltnled 11052 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ ((2nd𝑇) − 1)))
7875, 77mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (2nd𝑇) ≤ ((2nd𝑇) − 1))
79 elfzle2 13189 . . . . . . . . . . . . . . 15 ((2nd𝑇) ∈ (1...((2nd𝑇) − 1)) → (2nd𝑇) ≤ ((2nd𝑇) − 1))
8078, 79nsyl 140 . . . . . . . . . . . . . 14 (𝜑 → ¬ (2nd𝑇) ∈ (1...((2nd𝑇) − 1)))
81 difsn 4728 . . . . . . . . . . . . . 14 (¬ (2nd𝑇) ∈ (1...((2nd𝑇) − 1)) → ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) = (1...((2nd𝑇) − 1)))
8280, 81syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) = (1...((2nd𝑇) − 1)))
83 peano2re 11078 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℝ → ((2nd𝑇) + 1) ∈ ℝ)
8474, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) + 1) ∈ ℝ)
8574ltp1d 11835 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) < ((2nd𝑇) + 1))
8676, 74, 84, 75, 85lttrd 11066 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) − 1) < ((2nd𝑇) + 1))
8776, 84ltnled 11052 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1)))
8886, 87mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1))
89 elfzle2 13189 . . . . . . . . . . . . . . 15 (((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)) → ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1))
9088, 89nsyl 140 . . . . . . . . . . . . . 14 (𝜑 → ¬ ((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)))
91 difsn 4728 . . . . . . . . . . . . . 14 (¬ ((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)) → ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
9290, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
9382, 92ineq12d 4144 . . . . . . . . . . . 12 (𝜑 → (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)})) = ((1...((2nd𝑇) − 1)) ∩ (1...((2nd𝑇) − 1))))
94 difun2 4411 . . . . . . . . . . . . 13 (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
95 df-pr 4561 . . . . . . . . . . . . . 14 {(2nd𝑇), ((2nd𝑇) + 1)} = ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})
9695difeq2i 4050 . . . . . . . . . . . . 13 ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
97 difundi 4210 . . . . . . . . . . . . 13 ((1...((2nd𝑇) − 1)) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}))
9894, 96, 973eqtrri 2771 . . . . . . . . . . . 12 (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)})) = (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
99 inidm 4149 . . . . . . . . . . . 12 ((1...((2nd𝑇) − 1)) ∩ (1...((2nd𝑇) − 1))) = (1...((2nd𝑇) − 1))
10093, 98, 993eqtr3g 2802 . . . . . . . . . . 11 (𝜑 → (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
10173, 100eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
102 peano2re 11078 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) + 1) ∈ ℝ → (((2nd𝑇) + 1) + 1) ∈ ℝ)
10384, 102syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) + 1) + 1) ∈ ℝ)
10484ltp1d 11835 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) + 1) < (((2nd𝑇) + 1) + 1))
10574, 84, 103, 85, 104lttrd 11066 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) < (((2nd𝑇) + 1) + 1))
10674, 103ltnled 11052 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑇) < (((2nd𝑇) + 1) + 1) ↔ ¬ (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇)))
107105, 106mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ¬ (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇))
108 elfzle1 13188 . . . . . . . . . . . . . 14 ((2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇))
109107, 108nsyl 140 . . . . . . . . . . . . 13 (𝜑 → ¬ (2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
110 difsn 4728 . . . . . . . . . . . . 13 (¬ (2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
11284, 103ltnled 11052 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd𝑇) + 1) < (((2nd𝑇) + 1) + 1) ↔ ¬ (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1)))
113104, 112mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ¬ (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1))
114 elfzle1 13188 . . . . . . . . . . . . . 14 (((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1))
115113, 114nsyl 140 . . . . . . . . . . . . 13 (𝜑 → ¬ ((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
116 difsn 4728 . . . . . . . . . . . . 13 (¬ ((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
117115, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
118111, 117ineq12d 4144 . . . . . . . . . . 11 (𝜑 → ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)})) = (((((2nd𝑇) + 1) + 1)...𝑁) ∩ ((((2nd𝑇) + 1) + 1)...𝑁)))
11995difeq2i 4050 . . . . . . . . . . . 12 (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((((2nd𝑇) + 1) + 1)...𝑁) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
120 difundi 4210 . . . . . . . . . . . 12 (((((2nd𝑇) + 1) + 1)...𝑁) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}))
121119, 120eqtr2i 2767 . . . . . . . . . . 11 ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)})) = (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
122 inidm 4149 . . . . . . . . . . 11 (((((2nd𝑇) + 1) + 1)...𝑁) ∩ ((((2nd𝑇) + 1) + 1)...𝑁)) = ((((2nd𝑇) + 1) + 1)...𝑁)
123118, 121, 1223eqtr3g 2802 . . . . . . . . . 10 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
124101, 123uneq12d 4094 . . . . . . . . 9 (𝜑 → (((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
12547, 124syl5eq 2791 . . . . . . . 8 (𝜑 → (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
12646, 125eqtrd 2778 . . . . . . 7 (𝜑 → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
127126eleq2d 2824 . . . . . 6 (𝜑 → (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ↔ 𝑘 ∈ ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁))))
128 elun 4079 . . . . . 6 (𝑘 ∈ ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ↔ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
129127, 128bitrdi 286 . . . . 5 (𝜑 → (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ↔ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))))
130129biimpa 476 . . . 4 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
131 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
132131breq2d 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
133132ifbid 4479 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
134133csbeq1d 3832 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
135 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
136 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
137136imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
138137xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
139136imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
140139xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
141138, 140uneq12d 4094 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
142135, 141oveq12d 7273 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
143142csbeq2dv 3835 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
144134, 143eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
145144mpteq2dv 5172 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
146145eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
147146, 3elrab2 3620 . . . . . . . . . . . . . . 15 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
148147simprbi 496 . . . . . . . . . . . . . 14 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
14919, 148syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
150 xp1st 7836 . . . . . . . . . . . . . . . 16 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
15124, 150syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
152 elmapi 8595 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
153151, 152syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
154 elfzoelz 13316 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ)
155154ssriv 3921 . . . . . . . . . . . . . 14 (0..^𝐾) ⊆ ℤ
156 fss 6601 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
157153, 155, 156sylancl 585 . . . . . . . . . . . . 13 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
15838, 149, 157, 30, 35poimirlem1 35705 . . . . . . . . . . . 12 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
15938adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → 𝑁 ∈ ℕ)
160 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (2nd𝑡) = (2nd𝑈))
161160breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑈)))
162161ifbid 4479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑈 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)))
163162csbeq1d 3832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
164 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑈)))
165 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑈 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑈)))
166165imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑗)))
167166xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}))
168165imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)))
169168xpeq1d 5609 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))
170167, 169uneq12d 4094 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))
171164, 170oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑈 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
172171csbeq2dv 3835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑈if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
173163, 172eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
174173mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
175174eqeq2d 2749 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
176175, 3elrab2 3620 . . . . . . . . . . . . . . . . . 18 (𝑈𝑆 ↔ (𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
177176simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑈𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1781, 177syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
179178adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘f + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
180 xp1st 7836 . . . . . . . . . . . . . . . . . . 19 ((1st𝑈) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
1817, 180syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
182 elmapi 8595 . . . . . . . . . . . . . . . . . 18 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
183181, 182syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
184 fss 6601 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
185183, 155, 184sylancl 585 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
186185adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
18713adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
18835adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
189 xp2nd 7837 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑈) ∈ (0...𝑁))
1905, 189syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑈) ∈ (0...𝑁))
191 eldifsn 4717 . . . . . . . . . . . . . . . . 17 ((2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}) ↔ ((2nd𝑈) ∈ (0...𝑁) ∧ (2nd𝑈) ≠ (2nd𝑇)))
192191biimpri 227 . . . . . . . . . . . . . . . 16 (((2nd𝑈) ∈ (0...𝑁) ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
193190, 192sylan 579 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
194159, 179, 186, 187, 188, 193poimirlem2 35706 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
195194ex 412 . . . . . . . . . . . . 13 (𝜑 → ((2nd𝑈) ≠ (2nd𝑇) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛)))
196195necon1bd 2960 . . . . . . . . . . . 12 (𝜑 → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛) → (2nd𝑈) = (2nd𝑇)))
197158, 196mpd 15 . . . . . . . . . . 11 (𝜑 → (2nd𝑈) = (2nd𝑇))
198197oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((2nd𝑈) − 1) = ((2nd𝑇) − 1))
199198oveq2d 7271 . . . . . . . . 9 (𝜑 → (1...((2nd𝑈) − 1)) = (1...((2nd𝑇) − 1)))
200199eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑘 ∈ (1...((2nd𝑈) − 1)) ↔ 𝑘 ∈ (1...((2nd𝑇) − 1))))
201200biimpar 477 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑘 ∈ (1...((2nd𝑈) − 1)))
20238adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑁 ∈ ℕ)
2031adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑈𝑆)
204197, 35eqeltrd 2839 . . . . . . . . 9 (𝜑 → (2nd𝑈) ∈ (1...(𝑁 − 1)))
205204adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → (2nd𝑈) ∈ (1...(𝑁 − 1)))
206 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑘 ∈ (1...((2nd𝑈) − 1)))
207202, 3, 203, 205, 206poimirlem6 35710 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
208201, 207syldan 590 . . . . . 6 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
20938adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑁 ∈ ℕ)
21019adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑇𝑆)
21135adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
212 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑘 ∈ (1...((2nd𝑇) − 1)))
213209, 3, 210, 211, 212poimirlem6 35710 . . . . . 6 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑘))
214208, 213eqtr3d 2780 . . . . 5 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
215197oveq1d 7270 . . . . . . . . . . 11 (𝜑 → ((2nd𝑈) + 1) = ((2nd𝑇) + 1))
216215oveq1d 7270 . . . . . . . . . 10 (𝜑 → (((2nd𝑈) + 1) + 1) = (((2nd𝑇) + 1) + 1))
217216oveq1d 7270 . . . . . . . . 9 (𝜑 → ((((2nd𝑈) + 1) + 1)...𝑁) = ((((2nd𝑇) + 1) + 1)...𝑁))
218217eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁) ↔ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
219218biimpar 477 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁))
22038adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑁 ∈ ℕ)
2211adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑈𝑆)
222204adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → (2nd𝑈) ∈ (1...(𝑁 − 1)))
223 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁))
224220, 3, 221, 222, 223poimirlem7 35711 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
225219, 224syldan 590 . . . . . 6 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
22638adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑁 ∈ ℕ)
22719adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑇𝑆)
22835adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
229 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
230226, 3, 227, 228, 229poimirlem7 35711 . . . . . 6 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑘))
231225, 230eqtr3d 2780 . . . . 5 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
232214, 231jaodan 954 . . . 4 ((𝜑 ∧ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
233130, 232syldan 590 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
234 fvres 6775 . . . 4 (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑈))‘𝑘))
235234adantl 481 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑈))‘𝑘))
236 fvres 6775 . . . 4 (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
237236adantl 481 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
238233, 235, 2373eqtr4d 2788 . 2 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘))
23918, 34, 238eqfnfvd 6894 1 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  ∃*wrmo 3066  {crab 3067  csb 3828  cdif 3880  cun 3881  cin 3882  wss 3883  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153   × cxp 5578  cres 5582  cima 5583   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  crio 7211  (class class class)co 7255  f cof 7509  1st c1st 7802  2nd c2nd 7803  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  poimirlem9  35713
  Copyright terms: Public domain W3C validator