Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisj2cnt Structured version   Visualization version   GIF version

Theorem iundisj2cnt 30656
 Description: A countable disjoint union is disjoint. Cf. iundisj2 24262. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Hypotheses
Ref Expression
iundisj2cnt.0 𝑛𝐵
iundisj2cnt.1 (𝑛 = 𝑘𝐴 = 𝐵)
iundisj2cnt.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀)))
Assertion
Ref Expression
iundisj2cnt (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
Distinct variable groups:   𝑘,𝑛,𝑀   𝐴,𝑘   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem iundisj2cnt
StepHypRef Expression
1 iundisj2cnt.2 . 2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀)))
2 nfcv 2919 . . . . 5 𝑘𝐴
3 iundisj2cnt.0 . . . . 5 𝑛𝐵
4 iundisj2cnt.1 . . . . 5 (𝑛 = 𝑘𝐴 = 𝐵)
52, 3, 4iundisj2f 30464 . . . 4 Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
6 disjeq1 5008 . . . 4 (𝑁 = ℕ → (Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
75, 6mpbiri 261 . . 3 (𝑁 = ℕ → Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
83, 4iundisj2fi 30654 . . . 4 Disj 𝑛 ∈ (1..^𝑀)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
9 disjeq1 5008 . . . 4 (𝑁 = (1..^𝑀) → (Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ Disj 𝑛 ∈ (1..^𝑀)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
108, 9mpbiri 261 . . 3 (𝑁 = (1..^𝑀) → Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
117, 10jaoi 854 . 2 ((𝑁 = ℕ ∨ 𝑁 = (1..^𝑀)) → Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
121, 11syl 17 1 (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 844   = wceq 1538  Ⅎwnfc 2899   ∖ cdif 3857  ∪ ciun 4886  Disj wdisj 5001  (class class class)co 7156  1c1 10589  ℕcn 11687  ..^cfzo 13095 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-disj 5002  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-fzo 13096 This theorem is referenced by:  measiuns  31716
 Copyright terms: Public domain W3C validator