![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmeasadd | Structured version Visualization version GIF version |
Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
caraext.1 | ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
caraext.2 | ⊢ (𝜑 → (𝑃‘∅) = 0) |
caraext.3 | ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
pmeassubadd.q | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
pmeassubadd.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑄) |
pmeassubadd.2 | ⊢ (𝜑 → 𝐴 ≼ ω) |
pmeassubadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) |
pmeasadd.4 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
pmeasadd | ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmeassubadd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) | |
2 | 1 | ralrimiva 3147 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅) |
3 | dfiun3g 5961 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
5 | 4 | fveq2d 6892 | . 2 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
6 | pmeassubadd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≼ ω) | |
7 | mptct 10529 | . . . . . 6 ⊢ (𝐴 ≼ ω → (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
8 | rnct 10516 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
10 | eqid 2733 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
11 | 10 | rnmptss 7117 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
13 | pmeasadd.4 | . . . . . 6 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
14 | disjrnmpt 31794 | . . . . . 6 ⊢ (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) |
16 | 9, 12, 15 | 3jca 1129 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) |
17 | 16 | ancli 550 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
18 | ctex 8955 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
19 | mptexg 7218 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
20 | 6, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
21 | rnexg 7890 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
22 | breq1 5150 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω)) | |
23 | sseq1 4006 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ⊆ 𝑅 ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅)) | |
24 | disjeq1 5119 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) | |
25 | 22, 23, 24 | 3anbi123d 1437 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
26 | 25 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)))) |
27 | unieq 4918 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ∪ 𝑥 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
28 | 27 | fveq2d 6892 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑃‘∪ 𝑥) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
29 | esumeq1 32970 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) | |
30 | 28, 29 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
31 | 26, 30 | imbi12d 345 | . . . . 5 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)))) |
32 | caraext.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) | |
33 | 31, 32 | vtoclg 3556 | . . . 4 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
34 | 20, 21, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
35 | 17, 34 | mpd 15 | . 2 ⊢ (𝜑 → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) |
36 | fveq2 6888 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑃‘𝑦) = (𝑃‘𝐵)) | |
37 | 6, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
38 | caraext.1 | . . . . 5 ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) | |
39 | 38 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃:𝑅⟶(0[,]+∞)) |
40 | 39, 1 | ffvelcdmd 7083 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑃‘𝐵) ∈ (0[,]+∞)) |
41 | fveq2 6888 | . . . . 5 ⊢ (𝐵 = ∅ → (𝑃‘𝐵) = (𝑃‘∅)) | |
42 | 41 | adantl 483 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = (𝑃‘∅)) |
43 | caraext.2 | . . . . 5 ⊢ (𝜑 → (𝑃‘∅) = 0) | |
44 | 43 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0) |
45 | 42, 44 | eqtrd 2773 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = 0) |
46 | 36, 37, 40, 1, 45, 13 | esumrnmpt2 33004 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
47 | 5, 35, 46 | 3eqtrd 2777 | 1 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 Vcvv 3475 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 ∪ ciun 4996 Disj wdisj 5112 class class class wbr 5147 ↦ cmpt 5230 ran crn 5676 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ωcom 7850 ≼ cdom 8933 0cc0 11106 +∞cpnf 11241 [,]cicc 13323 Σ*cesum 32963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-ordt 17443 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-plusf 18556 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-cring 20050 df-subrg 20349 df-abv 20413 df-lmod 20461 df-scaf 20462 df-sra 20773 df-rgmod 20774 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lp 22622 df-perf 22623 df-cn 22713 df-cnp 22714 df-haus 22801 df-tx 23048 df-hmeo 23241 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-tmd 23558 df-tgp 23559 df-tsms 23613 df-trg 23646 df-xms 23808 df-ms 23809 df-tms 23810 df-nm 24073 df-ngp 24074 df-nrg 24076 df-nlm 24077 df-ii 24375 df-cncf 24376 df-limc 25365 df-dv 25366 df-log 26047 df-esum 32964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |