Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasadd Structured version   Visualization version   GIF version

 Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeassubadd.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
Assertion
Ref Expression
pmeasadd (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑃,𝑘   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑠)   𝐵(𝑘,𝑠)   𝑃(𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑅(𝑠)   𝑂(𝑥,𝑦,𝑘,𝑠)

StepHypRef Expression
1 pmeassubadd.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑅)
21ralrimiva 3149 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑅)
3 dfiun3g 5804 . . . 4 (∀𝑘𝐴 𝐵𝑅 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
42, 3syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
54fveq2d 6659 . 2 (𝜑 → (𝑃 𝑘𝐴 𝐵) = (𝑃 ran (𝑘𝐴𝐵)))
6 pmeassubadd.2 . . . . . 6 (𝜑𝐴 ≼ ω)
7 mptct 9967 . . . . . 6 (𝐴 ≼ ω → (𝑘𝐴𝐵) ≼ ω)
8 rnct 9954 . . . . . 6 ((𝑘𝐴𝐵) ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
96, 7, 83syl 18 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
10 eqid 2798 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 6873 . . . . . 6 (∀𝑘𝐴 𝐵𝑅 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
122, 11syl 17 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
13 pmeasadd.4 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
14 disjrnmpt 30392 . . . . . 6 (Disj 𝑘𝐴 𝐵Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
1513, 14syl 17 . . . . 5 (𝜑Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
169, 12, 153jca 1125 . . . 4 (𝜑 → (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
1716ancli 552 . . 3 (𝜑 → (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
18 ctex 8525 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
19 mptexg 6971 . . . . 5 (𝐴 ∈ V → (𝑘𝐴𝐵) ∈ V)
206, 18, 193syl 18 . . . 4 (𝜑 → (𝑘𝐴𝐵) ∈ V)
21 rnexg 7608 . . . 4 ((𝑘𝐴𝐵) ∈ V → ran (𝑘𝐴𝐵) ∈ V)
22 breq1 5037 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥 ≼ ω ↔ ran (𝑘𝐴𝐵) ≼ ω))
23 sseq1 3942 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥𝑅 ↔ ran (𝑘𝐴𝐵) ⊆ 𝑅))
24 disjeq1 5006 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
2522, 23, 243anbi123d 1433 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
2625anbi2d 631 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))))
27 unieq 4815 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → 𝑥 = ran (𝑘𝐴𝐵))
2827fveq2d 6659 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → (𝑃 𝑥) = (𝑃 ran (𝑘𝐴𝐵)))
29 esumeq1 31469 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
3028, 29eqeq12d 2814 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3126, 30imbi12d 348 . . . . 5 (𝑥 = ran (𝑘𝐴𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))))
32 caraext.3 . . . . 5 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
3331, 32vtoclg 3516 . . . 4 (ran (𝑘𝐴𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3420, 21, 333syl 18 . . 3 (𝜑 → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3517, 34mpd 15 . 2 (𝜑 → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
36 fveq2 6655 . . 3 (𝑦 = 𝐵 → (𝑃𝑦) = (𝑃𝐵))
376, 18syl 17 . . 3 (𝜑𝐴 ∈ V)
38 caraext.1 . . . . 5 (𝜑𝑃:𝑅⟶(0[,]+∞))
3938adantr 484 . . . 4 ((𝜑𝑘𝐴) → 𝑃:𝑅⟶(0[,]+∞))
4039, 1ffvelrnd 6839 . . 3 ((𝜑𝑘𝐴) → (𝑃𝐵) ∈ (0[,]+∞))
41 fveq2 6655 . . . . 5 (𝐵 = ∅ → (𝑃𝐵) = (𝑃‘∅))
4241adantl 485 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = (𝑃‘∅))
43 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
4443ad2antrr 725 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0)
4542, 44eqtrd 2833 . . 3 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = 0)
4636, 37, 40, 1, 45, 13esumrnmpt2 31503 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦) = Σ*𝑘𝐴(𝑃𝐵))
475, 35, 463eqtrd 2837 1 (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3442   ∖ cdif 3880   ∪ cun 3881   ⊆ wss 3883  ∅c0 4246  𝒫 cpw 4500  ∪ cuni 4804  ∪ ciun 4885  Disj wdisj 4999   class class class wbr 5034   ↦ cmpt 5114  ran crn 5524  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ωcom 7573   ≼ cdom 8508  0cc0 10544  +∞cpnf 10679  [,]cicc 12749  Σ*cesum 31462 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-ac2 9892  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-disj 5000  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-ac 9545  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ioo 12750  df-ioc 12751  df-ico 12752  df-icc 12753  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-seq 13385  df-exp 13446  df-fac 13650  df-bc 13679  df-hash 13707  df-shft 14438  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-limsup 14840  df-clim 14857  df-rlim 14858  df-sum 15055  df-ef 15433  df-sin 15435  df-cos 15436  df-pi 15438  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-rest 16708  df-topn 16709  df-0g 16727  df-gsum 16728  df-topgen 16729  df-pt 16730  df-prds 16733  df-ordt 16786  df-xrs 16787  df-qtop 16792  df-imas 16793  df-xps 16795  df-mre 16869  df-mrc 16870  df-acs 16872  df-ps 17822  df-tsr 17823  df-plusf 17863  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-subg 18289  df-cntz 18460  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-cring 19314  df-subrg 19547  df-abv 19602  df-lmod 19650  df-scaf 19651  df-sra 19958  df-rgmod 19959  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-fbas 20109  df-fg 20110  df-cnfld 20113  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-cld 21665  df-ntr 21666  df-cls 21667  df-nei 21744  df-lp 21782  df-perf 21783  df-cn 21873  df-cnp 21874  df-haus 21961  df-tx 22208  df-hmeo 22401  df-fil 22492  df-fm 22584  df-flim 22585  df-flf 22586  df-tmd 22718  df-tgp 22719  df-tsms 22773  df-trg 22806  df-xms 22968  df-ms 22969  df-tms 22970  df-nm 23230  df-ngp 23231  df-nrg 23233  df-nlm 23234  df-ii 23523  df-cncf 23524  df-limc 24510  df-dv 24511  df-log 25192  df-esum 31463 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator