Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasadd Structured version   Visualization version   GIF version

Theorem pmeasadd 33312
Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeassubadd.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
pmeassubadd.1 (𝜑𝑅𝑄)
pmeassubadd.2 (𝜑𝐴 ≼ ω)
pmeassubadd.3 ((𝜑𝑘𝐴) → 𝐵𝑅)
pmeasadd.4 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
pmeasadd (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑃,𝑘   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑠)   𝐵(𝑘,𝑠)   𝑃(𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑅(𝑠)   𝑂(𝑥,𝑦,𝑘,𝑠)

Proof of Theorem pmeasadd
StepHypRef Expression
1 pmeassubadd.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑅)
21ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑅)
3 dfiun3g 5961 . . . 4 (∀𝑘𝐴 𝐵𝑅 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
42, 3syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
54fveq2d 6892 . 2 (𝜑 → (𝑃 𝑘𝐴 𝐵) = (𝑃 ran (𝑘𝐴𝐵)))
6 pmeassubadd.2 . . . . . 6 (𝜑𝐴 ≼ ω)
7 mptct 10529 . . . . . 6 (𝐴 ≼ ω → (𝑘𝐴𝐵) ≼ ω)
8 rnct 10516 . . . . . 6 ((𝑘𝐴𝐵) ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
96, 7, 83syl 18 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
10 eqid 2732 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 7118 . . . . . 6 (∀𝑘𝐴 𝐵𝑅 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
122, 11syl 17 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
13 pmeasadd.4 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
14 disjrnmpt 31803 . . . . . 6 (Disj 𝑘𝐴 𝐵Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
1513, 14syl 17 . . . . 5 (𝜑Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
169, 12, 153jca 1128 . . . 4 (𝜑 → (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
1716ancli 549 . . 3 (𝜑 → (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
18 ctex 8955 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
19 mptexg 7219 . . . . 5 (𝐴 ∈ V → (𝑘𝐴𝐵) ∈ V)
206, 18, 193syl 18 . . . 4 (𝜑 → (𝑘𝐴𝐵) ∈ V)
21 rnexg 7891 . . . 4 ((𝑘𝐴𝐵) ∈ V → ran (𝑘𝐴𝐵) ∈ V)
22 breq1 5150 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥 ≼ ω ↔ ran (𝑘𝐴𝐵) ≼ ω))
23 sseq1 4006 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥𝑅 ↔ ran (𝑘𝐴𝐵) ⊆ 𝑅))
24 disjeq1 5119 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
2522, 23, 243anbi123d 1436 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
2625anbi2d 629 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))))
27 unieq 4918 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → 𝑥 = ran (𝑘𝐴𝐵))
2827fveq2d 6892 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → (𝑃 𝑥) = (𝑃 ran (𝑘𝐴𝐵)))
29 esumeq1 33020 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
3028, 29eqeq12d 2748 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3126, 30imbi12d 344 . . . . 5 (𝑥 = ran (𝑘𝐴𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))))
32 caraext.3 . . . . 5 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
3331, 32vtoclg 3556 . . . 4 (ran (𝑘𝐴𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3420, 21, 333syl 18 . . 3 (𝜑 → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3517, 34mpd 15 . 2 (𝜑 → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
36 fveq2 6888 . . 3 (𝑦 = 𝐵 → (𝑃𝑦) = (𝑃𝐵))
376, 18syl 17 . . 3 (𝜑𝐴 ∈ V)
38 caraext.1 . . . . 5 (𝜑𝑃:𝑅⟶(0[,]+∞))
3938adantr 481 . . . 4 ((𝜑𝑘𝐴) → 𝑃:𝑅⟶(0[,]+∞))
4039, 1ffvelcdmd 7084 . . 3 ((𝜑𝑘𝐴) → (𝑃𝐵) ∈ (0[,]+∞))
41 fveq2 6888 . . . . 5 (𝐵 = ∅ → (𝑃𝐵) = (𝑃‘∅))
4241adantl 482 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = (𝑃‘∅))
43 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
4443ad2antrr 724 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0)
4542, 44eqtrd 2772 . . 3 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = 0)
4636, 37, 40, 1, 45, 13esumrnmpt2 33054 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦) = Σ*𝑘𝐴(𝑃𝐵))
475, 35, 463eqtrd 2776 1 (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474  cdif 3944  cun 3945  wss 3947  c0 4321  𝒫 cpw 4601   cuni 4907   ciun 4996  Disj wdisj 5112   class class class wbr 5147  cmpt 5230  ran crn 5676  wf 6536  cfv 6540  (class class class)co 7405  ωcom 7851  cdom 8933  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  Σ*cesum 33013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-ordt 17443  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-ps 18515  df-tsr 18516  df-plusf 18556  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-abv 20417  df-lmod 20465  df-scaf 20466  df-sra 20777  df-rgmod 20778  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-tmd 23567  df-tgp 23568  df-tsms 23622  df-trg 23655  df-xms 23817  df-ms 23818  df-tms 23819  df-nm 24082  df-ngp 24083  df-nrg 24085  df-nlm 24086  df-ii 24384  df-cncf 24385  df-limc 25374  df-dv 25375  df-log 26056  df-esum 33014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator