Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasadd Structured version   Visualization version   GIF version

Theorem pmeasadd 30895
Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeassubadd.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
pmeassubadd.1 (𝜑𝑅𝑄)
pmeassubadd.2 (𝜑𝐴 ≼ ω)
pmeassubadd.3 ((𝜑𝑘𝐴) → 𝐵𝑅)
pmeasadd.4 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
pmeasadd (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑃,𝑘   𝑅,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑠)   𝐵(𝑘,𝑠)   𝑃(𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑅(𝑠)   𝑂(𝑥,𝑦,𝑘,𝑠)

Proof of Theorem pmeasadd
StepHypRef Expression
1 pmeassubadd.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑅)
21ralrimiva 3145 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑅)
3 dfiun3g 5580 . . . 4 (∀𝑘𝐴 𝐵𝑅 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
42, 3syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
54fveq2d 6413 . 2 (𝜑 → (𝑃 𝑘𝐴 𝐵) = (𝑃 ran (𝑘𝐴𝐵)))
6 pmeassubadd.2 . . . . . 6 (𝜑𝐴 ≼ ω)
7 mptct 9646 . . . . . 6 (𝐴 ≼ ω → (𝑘𝐴𝐵) ≼ ω)
8 rnct 9633 . . . . . 6 ((𝑘𝐴𝐵) ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
96, 7, 83syl 18 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
10 eqid 2797 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 6616 . . . . . 6 (∀𝑘𝐴 𝐵𝑅 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
122, 11syl 17 . . . . 5 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑅)
13 pmeasadd.4 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
14 disjrnmpt 29907 . . . . . 6 (Disj 𝑘𝐴 𝐵Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
1513, 14syl 17 . . . . 5 (𝜑Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)
169, 12, 153jca 1159 . . . 4 (𝜑 → (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
1716ancli 545 . . 3 (𝜑 → (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
18 ctex 8208 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
19 mptexg 6711 . . . . 5 (𝐴 ∈ V → (𝑘𝐴𝐵) ∈ V)
206, 18, 193syl 18 . . . 4 (𝜑 → (𝑘𝐴𝐵) ∈ V)
21 rnexg 7330 . . . 4 ((𝑘𝐴𝐵) ∈ V → ran (𝑘𝐴𝐵) ∈ V)
22 breq1 4844 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥 ≼ ω ↔ ran (𝑘𝐴𝐵) ≼ ω))
23 sseq1 3820 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (𝑥𝑅 ↔ ran (𝑘𝐴𝐵) ⊆ 𝑅))
24 disjeq1 4816 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))
2522, 23, 243anbi123d 1561 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)))
2625anbi2d 623 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦))))
27 unieq 4634 . . . . . . . 8 (𝑥 = ran (𝑘𝐴𝐵) → 𝑥 = ran (𝑘𝐴𝐵))
2827fveq2d 6413 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → (𝑃 𝑥) = (𝑃 ran (𝑘𝐴𝐵)))
29 esumeq1 30604 . . . . . . 7 (𝑥 = ran (𝑘𝐴𝐵) → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
3028, 29eqeq12d 2812 . . . . . 6 (𝑥 = ran (𝑘𝐴𝐵) → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3126, 30imbi12d 336 . . . . 5 (𝑥 = ran (𝑘𝐴𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))))
32 caraext.3 . . . . 5 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
3331, 32vtoclg 3451 . . . 4 (ran (𝑘𝐴𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3420, 21, 333syl 18 . . 3 (𝜑 → ((𝜑 ∧ (ran (𝑘𝐴𝐵) ≼ ω ∧ ran (𝑘𝐴𝐵) ⊆ 𝑅Disj 𝑦 ∈ ran (𝑘𝐴𝐵)𝑦)) → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦)))
3517, 34mpd 15 . 2 (𝜑 → (𝑃 ran (𝑘𝐴𝐵)) = Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦))
36 fveq2 6409 . . 3 (𝑦 = 𝐵 → (𝑃𝑦) = (𝑃𝐵))
376, 18syl 17 . . 3 (𝜑𝐴 ∈ V)
38 caraext.1 . . . . 5 (𝜑𝑃:𝑅⟶(0[,]+∞))
3938adantr 473 . . . 4 ((𝜑𝑘𝐴) → 𝑃:𝑅⟶(0[,]+∞))
4039, 1ffvelrnd 6584 . . 3 ((𝜑𝑘𝐴) → (𝑃𝐵) ∈ (0[,]+∞))
41 fveq2 6409 . . . . 5 (𝐵 = ∅ → (𝑃𝐵) = (𝑃‘∅))
4241adantl 474 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = (𝑃‘∅))
43 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
4443ad2antrr 718 . . . 4 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0)
4542, 44eqtrd 2831 . . 3 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → (𝑃𝐵) = 0)
4636, 37, 40, 1, 45, 13esumrnmpt2 30638 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)(𝑃𝑦) = Σ*𝑘𝐴(𝑃𝐵))
475, 35, 463eqtrd 2835 1 (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3087  {crab 3091  Vcvv 3383  cdif 3764  cun 3765  wss 3767  c0 4113  𝒫 cpw 4347   cuni 4626   ciun 4708  Disj wdisj 4809   class class class wbr 4841  cmpt 4920  ran crn 5311  wf 6095  cfv 6099  (class class class)co 6876  ωcom 7297  cdom 8191  0cc0 10222  +∞cpnf 10358  [,]cicc 12423  Σ*cesum 30597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-ac2 9571  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-disj 4810  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-acn 9052  df-ac 9223  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-ioc 12425  df-ico 12426  df-icc 12427  df-fz 12577  df-fzo 12717  df-fl 12844  df-mod 12920  df-seq 13052  df-exp 13111  df-fac 13310  df-bc 13339  df-hash 13367  df-shft 14145  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-limsup 14540  df-clim 14557  df-rlim 14558  df-sum 14755  df-ef 15131  df-sin 15133  df-cos 15134  df-pi 15136  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-ordt 16473  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-ps 17512  df-tsr 17513  df-plusf 17553  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-submnd 17648  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mulg 17854  df-subg 17901  df-cntz 18059  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-subrg 19093  df-abv 19132  df-lmod 19180  df-scaf 19181  df-sra 19492  df-rgmod 19493  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-fbas 20062  df-fg 20063  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-nei 21228  df-lp 21266  df-perf 21267  df-cn 21357  df-cnp 21358  df-haus 21445  df-tx 21691  df-hmeo 21884  df-fil 21975  df-fm 22067  df-flim 22068  df-flf 22069  df-tmd 22201  df-tgp 22202  df-tsms 22255  df-trg 22288  df-xms 22450  df-ms 22451  df-tms 22452  df-nm 22712  df-ngp 22713  df-nrg 22715  df-nlm 22716  df-ii 23005  df-cncf 23006  df-limc 23968  df-dv 23969  df-log 24641  df-esum 30598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator