| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmeasadd | Structured version Visualization version GIF version | ||
| Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| caraext.1 | ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
| caraext.2 | ⊢ (𝜑 → (𝑃‘∅) = 0) |
| caraext.3 | ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
| pmeassubadd.q | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| pmeassubadd.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑄) |
| pmeassubadd.2 | ⊢ (𝜑 → 𝐴 ≼ ω) |
| pmeassubadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) |
| pmeasadd.4 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| pmeasadd | ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmeassubadd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) | |
| 2 | 1 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅) |
| 3 | dfiun3g 5931 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 5 | 4 | fveq2d 6862 | . 2 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 6 | pmeassubadd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≼ ω) | |
| 7 | mptct 10491 | . . . . . 6 ⊢ (𝐴 ≼ ω → (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 8 | rnct 10478 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 11 | 10 | rnmptss 7095 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 13 | pmeasadd.4 | . . . . . 6 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 14 | disjrnmpt 32514 | . . . . . 6 ⊢ (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) |
| 16 | 9, 12, 15 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) |
| 17 | 16 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 18 | ctex 8935 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 19 | mptexg 7195 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 20 | 6, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 21 | rnexg 7878 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 22 | breq1 5110 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω)) | |
| 23 | sseq1 3972 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ⊆ 𝑅 ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅)) | |
| 24 | disjeq1 5081 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) | |
| 25 | 22, 23, 24 | 3anbi123d 1438 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 26 | 25 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)))) |
| 27 | unieq 4882 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ∪ 𝑥 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 28 | 27 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑃‘∪ 𝑥) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 29 | esumeq1 34024 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) | |
| 30 | 28, 29 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 31 | 26, 30 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)))) |
| 32 | caraext.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) | |
| 33 | 31, 32 | vtoclg 3520 | . . . 4 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 34 | 20, 21, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 35 | 17, 34 | mpd 15 | . 2 ⊢ (𝜑 → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) |
| 36 | fveq2 6858 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑃‘𝑦) = (𝑃‘𝐵)) | |
| 37 | 6, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 38 | caraext.1 | . . . . 5 ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) | |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃:𝑅⟶(0[,]+∞)) |
| 40 | 39, 1 | ffvelcdmd 7057 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑃‘𝐵) ∈ (0[,]+∞)) |
| 41 | fveq2 6858 | . . . . 5 ⊢ (𝐵 = ∅ → (𝑃‘𝐵) = (𝑃‘∅)) | |
| 42 | 41 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = (𝑃‘∅)) |
| 43 | caraext.2 | . . . . 5 ⊢ (𝜑 → (𝑃‘∅) = 0) | |
| 44 | 43 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0) |
| 45 | 42, 44 | eqtrd 2764 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = 0) |
| 46 | 36, 37, 40, 1, 45, 13 | esumrnmpt2 34058 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| 47 | 5, 35, 46 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 ∪ ciun 4955 Disj wdisj 5074 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-scaf 20769 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-tsms 24014 df-trg 24047 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-ii 24770 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-esum 34018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |