| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmeasadd | Structured version Visualization version GIF version | ||
| Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| caraext.1 | ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
| caraext.2 | ⊢ (𝜑 → (𝑃‘∅) = 0) |
| caraext.3 | ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
| pmeassubadd.q | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| pmeassubadd.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑄) |
| pmeassubadd.2 | ⊢ (𝜑 → 𝐴 ≼ ω) |
| pmeassubadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) |
| pmeasadd.4 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| pmeasadd | ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmeassubadd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) | |
| 2 | 1 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅) |
| 3 | dfiun3g 5947 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 5 | 4 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 6 | pmeassubadd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≼ ω) | |
| 7 | mptct 10552 | . . . . . 6 ⊢ (𝐴 ≼ ω → (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 8 | rnct 10539 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 10 | eqid 2735 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 11 | 10 | rnmptss 7113 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 13 | pmeasadd.4 | . . . . . 6 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 14 | disjrnmpt 32566 | . . . . . 6 ⊢ (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) |
| 16 | 9, 12, 15 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) |
| 17 | 16 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 18 | ctex 8978 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 19 | mptexg 7213 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 20 | 6, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 21 | rnexg 7898 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 22 | breq1 5122 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω)) | |
| 23 | sseq1 3984 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ⊆ 𝑅 ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅)) | |
| 24 | disjeq1 5093 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) | |
| 25 | 22, 23, 24 | 3anbi123d 1438 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 26 | 25 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)))) |
| 27 | unieq 4894 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ∪ 𝑥 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 28 | 27 | fveq2d 6880 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑃‘∪ 𝑥) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 29 | esumeq1 34065 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) | |
| 30 | 28, 29 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 31 | 26, 30 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)))) |
| 32 | caraext.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) | |
| 33 | 31, 32 | vtoclg 3533 | . . . 4 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 34 | 20, 21, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 35 | 17, 34 | mpd 15 | . 2 ⊢ (𝜑 → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) |
| 36 | fveq2 6876 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑃‘𝑦) = (𝑃‘𝐵)) | |
| 37 | 6, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 38 | caraext.1 | . . . . 5 ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) | |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃:𝑅⟶(0[,]+∞)) |
| 40 | 39, 1 | ffvelcdmd 7075 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑃‘𝐵) ∈ (0[,]+∞)) |
| 41 | fveq2 6876 | . . . . 5 ⊢ (𝐵 = ∅ → (𝑃‘𝐵) = (𝑃‘∅)) | |
| 42 | 41 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = (𝑃‘∅)) |
| 43 | caraext.2 | . . . . 5 ⊢ (𝜑 → (𝑃‘∅) = 0) | |
| 44 | 43 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0) |
| 45 | 42, 44 | eqtrd 2770 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = 0) |
| 46 | 36, 37, 40, 1, 45, 13 | esumrnmpt2 34099 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| 47 | 5, 35, 46 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 ∪ ciun 4967 Disj wdisj 5086 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≼ cdom 8957 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 Σ*cesum 34058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-ordt 17515 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-ps 18576 df-tsr 18577 df-plusf 18617 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrng 20506 df-subrg 20530 df-abv 20769 df-lmod 20819 df-scaf 20820 df-sra 21131 df-rgmod 21132 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-tmd 24010 df-tgp 24011 df-tsms 24065 df-trg 24098 df-xms 24259 df-ms 24260 df-tms 24261 df-nm 24521 df-ngp 24522 df-nrg 24524 df-nlm 24525 df-ii 24821 df-cncf 24822 df-limc 25819 df-dv 25820 df-log 26517 df-esum 34059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |