| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmeasadd | Structured version Visualization version GIF version | ||
| Description: A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| caraext.1 | ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
| caraext.2 | ⊢ (𝜑 → (𝑃‘∅) = 0) |
| caraext.3 | ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
| pmeassubadd.q | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| pmeassubadd.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑄) |
| pmeassubadd.2 | ⊢ (𝜑 → 𝐴 ≼ ω) |
| pmeassubadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) |
| pmeasadd.4 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| pmeasadd | ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmeassubadd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑅) | |
| 2 | 1 | ralrimiva 3121 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅) |
| 3 | dfiun3g 5913 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 5 | 4 | fveq2d 6830 | . 2 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 6 | pmeassubadd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≼ ω) | |
| 7 | mptct 10451 | . . . . . 6 ⊢ (𝐴 ≼ ω → (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 8 | rnct 10438 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 11 | 10 | rnmptss 7061 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑅 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅) |
| 13 | pmeasadd.4 | . . . . . 6 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 14 | disjrnmpt 32547 | . . . . . 6 ⊢ (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦) |
| 16 | 9, 12, 15 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) |
| 17 | 16 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 18 | ctex 8896 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 19 | mptexg 7161 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 20 | 6, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 21 | rnexg 7842 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 22 | breq1 5098 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω)) | |
| 23 | sseq1 3963 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑥 ⊆ 𝑅 ↔ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅)) | |
| 24 | disjeq1 5069 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) | |
| 25 | 22, 23, 24 | 3anbi123d 1438 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦))) |
| 26 | 25 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)))) |
| 27 | unieq 4872 | . . . . . . . 8 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ∪ 𝑥 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 28 | 27 | fveq2d 6830 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (𝑃‘∪ 𝑥) = (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 29 | esumeq1 34000 | . . . . . . 7 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) | |
| 30 | 28, 29 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 31 | 26, 30 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = ran (𝑘 ∈ 𝐴 ↦ 𝐵) → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)))) |
| 32 | caraext.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) | |
| 33 | 31, 32 | vtoclg 3511 | . . . 4 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 34 | 20, 21, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω ∧ ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑅 ∧ Disj 𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑦)) → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦))) |
| 35 | 17, 34 | mpd 15 | . 2 ⊢ (𝜑 → (𝑃‘∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦)) |
| 36 | fveq2 6826 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑃‘𝑦) = (𝑃‘𝐵)) | |
| 37 | 6, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 38 | caraext.1 | . . . . 5 ⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) | |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃:𝑅⟶(0[,]+∞)) |
| 40 | 39, 1 | ffvelcdmd 7023 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑃‘𝐵) ∈ (0[,]+∞)) |
| 41 | fveq2 6826 | . . . . 5 ⊢ (𝐵 = ∅ → (𝑃‘𝐵) = (𝑃‘∅)) | |
| 42 | 41 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = (𝑃‘∅)) |
| 43 | caraext.2 | . . . . 5 ⊢ (𝜑 → (𝑃‘∅) = 0) | |
| 44 | 43 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘∅) = 0) |
| 45 | 42, 44 | eqtrd 2764 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → (𝑃‘𝐵) = 0) |
| 46 | 36, 37, 40, 1, 45, 13 | esumrnmpt2 34034 | . 2 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)(𝑃‘𝑦) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| 47 | 5, 35, 46 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑃‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ*𝑘 ∈ 𝐴(𝑃‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 Vcvv 3438 ∖ cdif 3902 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 ∪ cuni 4861 ∪ ciun 4944 Disj wdisj 5062 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ≼ cdom 8877 0cc0 11028 +∞cpnf 11165 [,]cicc 13269 Σ*cesum 33993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-ordt 17423 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-ps 18490 df-tsr 18491 df-plusf 18531 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-subrng 20449 df-subrg 20473 df-abv 20712 df-lmod 20783 df-scaf 20784 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-tmd 23975 df-tgp 23976 df-tsms 24030 df-trg 24063 df-xms 24224 df-ms 24225 df-tms 24226 df-nm 24486 df-ngp 24487 df-nrg 24489 df-nlm 24490 df-ii 24786 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-esum 33994 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |