Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

Theorem meadjuni 42733
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m (𝜑𝑀 ∈ Meas)
meadjuni.s 𝑆 = dom 𝑀
meadjuni.x (𝜑𝑋𝑆)
meadjuni.cnb (𝜑𝑋 ≼ ω)
meadjuni.dj (𝜑Disj 𝑥𝑋 𝑥)
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem meadjuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . 2 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . 2 (𝜑Disj 𝑥𝑋 𝑥)
3 breq1 5061 . . . . 5 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
4 disjeq1 5030 . . . . 5 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
53, 4anbi12d 632 . . . 4 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
6 unieq 4839 . . . . . 6 (𝑦 = 𝑋 𝑦 = 𝑋)
76fveq2d 6668 . . . . 5 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
8 reseq2 5842 . . . . . 6 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
98fveq2d 6668 . . . . 5 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
107, 9eqeq12d 2837 . . . 4 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
115, 10imbi12d 347 . . 3 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
12 meadjuni.m . . . . 5 (𝜑𝑀 ∈ Meas)
13 ismea 42727 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1412, 13sylib 220 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 498 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 meadjuni.s . . . . . 6 𝑆 = dom 𝑀
1712, 16dmmeasal 42728 . . . . 5 (𝜑𝑆 ∈ SAlg)
18 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
1917, 18ssexd 5220 . . . 4 (𝜑𝑋 ∈ V)
2018, 16sseqtrdi 4016 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
2119, 20elpwd 4549 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
2211, 15, 21rspcdva 3624 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
231, 2, 22mp2and 697 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4831  Disj wdisj 5023   class class class wbr 5058  dom cdm 5549  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  ωcom 7574  cdom 8501  0cc0 10531  +∞cpnf 10666  [,]cicc 12735  SAlgcsalg 42587  Σ^csumge0 42638  Meascmea 42725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-mea 42726
This theorem is referenced by:  meadjun  42738  meadjiun  42742
  Copyright terms: Public domain W3C validator