| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meadjuni | Structured version Visualization version GIF version | ||
| Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| meadjuni.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meadjuni.s | ⊢ 𝑆 = dom 𝑀 |
| meadjuni.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| meadjuni.cnb | ⊢ (𝜑 → 𝑋 ≼ ω) |
| meadjuni.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) |
| Ref | Expression |
|---|---|
| meadjuni | ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meadjuni.cnb | . 2 ⊢ (𝜑 → 𝑋 ≼ ω) | |
| 2 | meadjuni.dj | . 2 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) | |
| 3 | breq1 5092 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω)) | |
| 4 | disjeq1 5063 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝑋 𝑥)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥))) |
| 6 | unieq 4867 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ∪ 𝑦 = ∪ 𝑋) | |
| 7 | 6 | fveq2d 6826 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝑋)) |
| 8 | reseq2 5922 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑀 ↾ 𝑦) = (𝑀 ↾ 𝑋)) | |
| 9 | 8 | fveq2d 6826 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ^‘(𝑀 ↾ 𝑦)) = (Σ^‘(𝑀 ↾ 𝑋))) |
| 10 | 7, 9 | eqeq12d 2747 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)) ↔ (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
| 11 | 5, 10 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))))) |
| 12 | meadjuni.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 13 | ismea 46497 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) | |
| 14 | 12, 13 | sylib 218 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) |
| 15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)))) |
| 16 | meadjuni.s | . . . . . 6 ⊢ 𝑆 = dom 𝑀 | |
| 17 | 12, 16 | dmmeasal 46498 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 18 | meadjuni.x | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 19 | 17, 18 | ssexd 5260 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
| 20 | 18, 16 | sseqtrdi 3970 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ dom 𝑀) |
| 21 | 19, 20 | elpwd 4553 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 dom 𝑀) |
| 22 | 11, 15, 21 | rspcdva 3573 | . 2 ⊢ (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
| 23 | 1, 2, 22 | mp2and 699 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 Disj wdisj 5056 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≼ cdom 8867 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 SAlgcsalg 46354 Σ^csumge0 46408 Meascmea 46495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-mea 46496 |
| This theorem is referenced by: meadjun 46508 meadjiun 46512 |
| Copyright terms: Public domain | W3C validator |