![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meadjuni | Structured version Visualization version GIF version |
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meadjuni.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meadjuni.s | ⊢ 𝑆 = dom 𝑀 |
meadjuni.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
meadjuni.cnb | ⊢ (𝜑 → 𝑋 ≼ ω) |
meadjuni.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) |
Ref | Expression |
---|---|
meadjuni | ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meadjuni.cnb | . 2 ⊢ (𝜑 → 𝑋 ≼ ω) | |
2 | meadjuni.dj | . 2 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) | |
3 | breq1 5150 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω)) | |
4 | disjeq1 5119 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝑋 𝑥)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥))) |
6 | unieq 4918 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ∪ 𝑦 = ∪ 𝑋) | |
7 | 6 | fveq2d 6892 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝑋)) |
8 | reseq2 5974 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑀 ↾ 𝑦) = (𝑀 ↾ 𝑋)) | |
9 | 8 | fveq2d 6892 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ^‘(𝑀 ↾ 𝑦)) = (Σ^‘(𝑀 ↾ 𝑋))) |
10 | 7, 9 | eqeq12d 2748 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)) ↔ (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
11 | 5, 10 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))))) |
12 | meadjuni.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
13 | ismea 45153 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) |
15 | 14 | simprd 496 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)))) |
16 | meadjuni.s | . . . . . 6 ⊢ 𝑆 = dom 𝑀 | |
17 | 12, 16 | dmmeasal 45154 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
18 | meadjuni.x | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
19 | 17, 18 | ssexd 5323 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
20 | 18, 16 | sseqtrdi 4031 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ dom 𝑀) |
21 | 19, 20 | elpwd 4607 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 dom 𝑀) |
22 | 11, 15, 21 | rspcdva 3613 | . 2 ⊢ (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
23 | 1, 2, 22 | mp2and 697 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 Disj wdisj 5112 class class class wbr 5147 dom cdm 5675 ↾ cres 5677 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ωcom 7851 ≼ cdom 8933 0cc0 11106 +∞cpnf 11241 [,]cicc 13323 SAlgcsalg 45010 Σ^csumge0 45064 Meascmea 45151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-mea 45152 |
This theorem is referenced by: meadjun 45164 meadjiun 45168 |
Copyright terms: Public domain | W3C validator |