Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

Theorem meadjuni 46438
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m (𝜑𝑀 ∈ Meas)
meadjuni.s 𝑆 = dom 𝑀
meadjuni.x (𝜑𝑋𝑆)
meadjuni.cnb (𝜑𝑋 ≼ ω)
meadjuni.dj (𝜑Disj 𝑥𝑋 𝑥)
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem meadjuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . 2 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . 2 (𝜑Disj 𝑥𝑋 𝑥)
3 breq1 5095 . . . . 5 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
4 disjeq1 5066 . . . . 5 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
53, 4anbi12d 632 . . . 4 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
6 unieq 4869 . . . . . 6 (𝑦 = 𝑋 𝑦 = 𝑋)
76fveq2d 6826 . . . . 5 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
8 reseq2 5925 . . . . . 6 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
98fveq2d 6826 . . . . 5 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
107, 9eqeq12d 2745 . . . 4 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
115, 10imbi12d 344 . . 3 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
12 meadjuni.m . . . . 5 (𝜑𝑀 ∈ Meas)
13 ismea 46432 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1412, 13sylib 218 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 495 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 meadjuni.s . . . . . 6 𝑆 = dom 𝑀
1712, 16dmmeasal 46433 . . . . 5 (𝜑𝑆 ∈ SAlg)
18 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
1917, 18ssexd 5263 . . . 4 (𝜑𝑋 ∈ V)
2018, 16sseqtrdi 3976 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
2119, 20elpwd 4557 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
2211, 15, 21rspcdva 3578 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
231, 2, 22mp2and 699 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858  Disj wdisj 5059   class class class wbr 5092  dom cdm 5619  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  ωcom 7799  cdom 8870  0cc0 11009  +∞cpnf 11146  [,]cicc 13251  SAlgcsalg 46289  Σ^csumge0 46343  Meascmea 46430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-mea 46431
This theorem is referenced by:  meadjun  46443  meadjiun  46447
  Copyright terms: Public domain W3C validator