Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

 Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . . 3 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . . 3 (𝜑Disj 𝑥𝑋 𝑥)
31, 2jca 507 . 2 (𝜑 → (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥))
4 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
5 meadjuni.s . . . . 5 𝑆 = dom 𝑀
64, 5syl6sseq 3870 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
7 meadjuni.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
87, 5dmmeasal 41607 . . . . . 6 (𝜑𝑆 ∈ SAlg)
98, 4ssexd 5044 . . . . 5 (𝜑𝑋 ∈ V)
10 elpwg 4387 . . . . 5 (𝑋 ∈ V → (𝑋 ∈ 𝒫 dom 𝑀𝑋 ⊆ dom 𝑀))
119, 10syl 17 . . . 4 (𝜑 → (𝑋 ∈ 𝒫 dom 𝑀𝑋 ⊆ dom 𝑀))
126, 11mpbird 249 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
13 ismea 41606 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
147, 13sylib 210 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 491 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 breq1 4891 . . . . . 6 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
17 disjeq1 4863 . . . . . 6 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
1816, 17anbi12d 624 . . . . 5 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
19 unieq 4681 . . . . . . 7 (𝑦 = 𝑋 𝑦 = 𝑋)
2019fveq2d 6452 . . . . . 6 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
21 reseq2 5639 . . . . . . 7 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
2221fveq2d 6452 . . . . . 6 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
2320, 22eqeq12d 2793 . . . . 5 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
2418, 23imbi12d 336 . . . 4 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
2524rspcva 3509 . . 3 ((𝑋 ∈ 𝒫 dom 𝑀 ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))) → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
2612, 15, 25syl2anc 579 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
273, 26mpd 15 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  ∀wral 3090  Vcvv 3398   ⊆ wss 3792  ∅c0 4141  𝒫 cpw 4379  ∪ cuni 4673  Disj wdisj 4856   class class class wbr 4888  dom cdm 5357   ↾ cres 5359  ⟶wf 6133  ‘cfv 6137  (class class class)co 6924  ωcom 7345   ≼ cdom 8241  0cc0 10274  +∞cpnf 10410  [,]cicc 12495  SAlgcsalg 41466  Σ^csumge0 41517  Meascmea 41604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pr 5140 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-disj 4857  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-mea 41605 This theorem is referenced by:  meadjun  41617  meadjiun  41621
 Copyright terms: Public domain W3C validator