Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

Theorem meadjuni 43885
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m (𝜑𝑀 ∈ Meas)
meadjuni.s 𝑆 = dom 𝑀
meadjuni.x (𝜑𝑋𝑆)
meadjuni.cnb (𝜑𝑋 ≼ ω)
meadjuni.dj (𝜑Disj 𝑥𝑋 𝑥)
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem meadjuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . 2 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . 2 (𝜑Disj 𝑥𝑋 𝑥)
3 breq1 5073 . . . . 5 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
4 disjeq1 5042 . . . . 5 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
53, 4anbi12d 630 . . . 4 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
6 unieq 4847 . . . . . 6 (𝑦 = 𝑋 𝑦 = 𝑋)
76fveq2d 6760 . . . . 5 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
8 reseq2 5875 . . . . . 6 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
98fveq2d 6760 . . . . 5 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
107, 9eqeq12d 2754 . . . 4 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
115, 10imbi12d 344 . . 3 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
12 meadjuni.m . . . . 5 (𝜑𝑀 ∈ Meas)
13 ismea 43879 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1412, 13sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 495 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 meadjuni.s . . . . . 6 𝑆 = dom 𝑀
1712, 16dmmeasal 43880 . . . . 5 (𝜑𝑆 ∈ SAlg)
18 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
1917, 18ssexd 5243 . . . 4 (𝜑𝑋 ∈ V)
2018, 16sseqtrdi 3967 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
2119, 20elpwd 4538 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
2211, 15, 21rspcdva 3554 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
231, 2, 22mp2and 695 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  Disj wdisj 5035   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  SAlgcsalg 43739  Σ^csumge0 43790  Meascmea 43877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-mea 43878
This theorem is referenced by:  meadjun  43890  meadjiun  43894
  Copyright terms: Public domain W3C validator