Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meadjuni | Structured version Visualization version GIF version |
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meadjuni.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meadjuni.s | ⊢ 𝑆 = dom 𝑀 |
meadjuni.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
meadjuni.cnb | ⊢ (𝜑 → 𝑋 ≼ ω) |
meadjuni.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) |
Ref | Expression |
---|---|
meadjuni | ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meadjuni.cnb | . 2 ⊢ (𝜑 → 𝑋 ≼ ω) | |
2 | meadjuni.dj | . 2 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) | |
3 | breq1 5077 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω)) | |
4 | disjeq1 5046 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝑋 𝑥)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥))) |
6 | unieq 4850 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ∪ 𝑦 = ∪ 𝑋) | |
7 | 6 | fveq2d 6778 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝑋)) |
8 | reseq2 5886 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑀 ↾ 𝑦) = (𝑀 ↾ 𝑋)) | |
9 | 8 | fveq2d 6778 | . . . . 5 ⊢ (𝑦 = 𝑋 → (Σ^‘(𝑀 ↾ 𝑦)) = (Σ^‘(𝑀 ↾ 𝑋))) |
10 | 7, 9 | eqeq12d 2754 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)) ↔ (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
11 | 5, 10 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))))) |
12 | meadjuni.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
13 | ismea 43989 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) |
15 | 14 | simprd 496 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)))) |
16 | meadjuni.s | . . . . . 6 ⊢ 𝑆 = dom 𝑀 | |
17 | 12, 16 | dmmeasal 43990 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
18 | meadjuni.x | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
19 | 17, 18 | ssexd 5248 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
20 | 18, 16 | sseqtrdi 3971 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ dom 𝑀) |
21 | 19, 20 | elpwd 4541 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 dom 𝑀) |
22 | 11, 15, 21 | rspcdva 3562 | . 2 ⊢ (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
23 | 1, 2, 22 | mp2and 696 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 Disj wdisj 5039 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ωcom 7712 ≼ cdom 8731 0cc0 10871 +∞cpnf 11006 [,]cicc 13082 SAlgcsalg 43849 Σ^csumge0 43900 Meascmea 43987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-mea 43988 |
This theorem is referenced by: meadjun 44000 meadjiun 44004 |
Copyright terms: Public domain | W3C validator |