Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

Theorem meadjuni 43995
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m (𝜑𝑀 ∈ Meas)
meadjuni.s 𝑆 = dom 𝑀
meadjuni.x (𝜑𝑋𝑆)
meadjuni.cnb (𝜑𝑋 ≼ ω)
meadjuni.dj (𝜑Disj 𝑥𝑋 𝑥)
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem meadjuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . 2 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . 2 (𝜑Disj 𝑥𝑋 𝑥)
3 breq1 5077 . . . . 5 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
4 disjeq1 5046 . . . . 5 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
53, 4anbi12d 631 . . . 4 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
6 unieq 4850 . . . . . 6 (𝑦 = 𝑋 𝑦 = 𝑋)
76fveq2d 6778 . . . . 5 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
8 reseq2 5886 . . . . . 6 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
98fveq2d 6778 . . . . 5 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
107, 9eqeq12d 2754 . . . 4 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
115, 10imbi12d 345 . . 3 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
12 meadjuni.m . . . . 5 (𝜑𝑀 ∈ Meas)
13 ismea 43989 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1412, 13sylib 217 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 496 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 meadjuni.s . . . . . 6 𝑆 = dom 𝑀
1712, 16dmmeasal 43990 . . . . 5 (𝜑𝑆 ∈ SAlg)
18 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
1917, 18ssexd 5248 . . . 4 (𝜑𝑋 ∈ V)
2018, 16sseqtrdi 3971 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
2119, 20elpwd 4541 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
2211, 15, 21rspcdva 3562 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
231, 2, 22mp2and 696 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  Disj wdisj 5039   class class class wbr 5074  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  SAlgcsalg 43849  Σ^csumge0 43900  Meascmea 43987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-mea 43988
This theorem is referenced by:  meadjun  44000  meadjiun  44004
  Copyright terms: Public domain W3C validator