Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvun | Structured version Visualization version GIF version |
Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measvun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆) | |
2 | measbase 31684 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | ismeas 31686 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
5 | 4 | ibi 270 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
6 | 5 | simp3d 1141 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
7 | 6 | 3ad2ant1 1130 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
8 | simp3 1135 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) | |
9 | breq1 5035 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω)) | |
10 | disjeq1 5004 | . . . . 5 ⊢ (𝑦 = 𝐴 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) | |
11 | 9, 10 | anbi12d 633 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥))) |
12 | unieq 4809 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
13 | 12 | fveq2d 6662 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝐴)) |
14 | esumeq1 31521 | . . . . 5 ⊢ (𝑦 = 𝐴 → Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) | |
15 | 13, 14 | eqeq12d 2774 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) ↔ (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥))) |
16 | 11, 15 | imbi12d 348 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
17 | 16 | rspcv 3536 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
18 | 1, 7, 8, 17 | syl3c 66 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∅c0 4225 𝒫 cpw 4494 ∪ cuni 4798 Disj wdisj 4997 class class class wbr 5032 ran crn 5525 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ωcom 7579 ≼ cdom 8525 0cc0 10575 +∞cpnf 10710 [,]cicc 12782 Σ*cesum 31514 sigAlgebracsiga 31595 measurescmeas 31682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-disj 4998 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-esum 31515 df-meas 31683 |
This theorem is referenced by: measxun2 31697 measvunilem 31699 measssd 31702 measres 31709 measdivcst 31711 measdivcstALTV 31712 probcun 31904 totprobd 31912 |
Copyright terms: Public domain | W3C validator |