| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measvun | Structured version Visualization version GIF version | ||
| Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| measvun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆) | |
| 2 | measbase 34228 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 3 | ismeas 34230 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
| 5 | 4 | ibi 267 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
| 6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) | |
| 9 | breq1 5122 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω)) | |
| 10 | disjeq1 5093 | . . . . 5 ⊢ (𝑦 = 𝐴 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) | |
| 11 | 9, 10 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥))) |
| 12 | unieq 4894 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
| 13 | 12 | fveq2d 6880 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝐴)) |
| 14 | esumeq1 34065 | . . . . 5 ⊢ (𝑦 = 𝐴 → Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) | |
| 15 | 13, 14 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) ↔ (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
| 17 | 16 | rspcv 3597 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
| 18 | 1, 7, 8, 17 | syl3c 66 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 Disj wdisj 5086 class class class wbr 5119 ran crn 5655 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≼ cdom 8957 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 Σ*cesum 34058 sigAlgebracsiga 34139 measurescmeas 34226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-esum 34059 df-meas 34227 |
| This theorem is referenced by: measxun2 34241 measvunilem 34243 measssd 34246 measres 34253 measdivcst 34255 measdivcstALTV 34256 probcun 34450 totprobd 34458 |
| Copyright terms: Public domain | W3C validator |