![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvun | Structured version Visualization version GIF version |
Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measvun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1173 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆) | |
2 | measbase 30804 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | ismeas 30806 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
5 | 4 | ibi 259 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
6 | 5 | simp3d 1180 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
7 | 6 | 3ad2ant1 1169 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
8 | simp3 1174 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) | |
9 | breq1 4875 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω)) | |
10 | disjeq1 4847 | . . . . 5 ⊢ (𝑦 = 𝐴 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) | |
11 | 9, 10 | anbi12d 626 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥))) |
12 | unieq 4665 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
13 | 12 | fveq2d 6436 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝐴)) |
14 | esumeq1 30640 | . . . . 5 ⊢ (𝑦 = 𝐴 → Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) | |
15 | 13, 14 | eqeq12d 2839 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) ↔ (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥))) |
16 | 11, 15 | imbi12d 336 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
17 | 16 | rspcv 3521 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
18 | 1, 7, 8, 17 | syl3c 66 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3116 ∅c0 4143 𝒫 cpw 4377 ∪ cuni 4657 Disj wdisj 4840 class class class wbr 4872 ran crn 5342 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 ωcom 7325 ≼ cdom 8219 0cc0 10251 +∞cpnf 10387 [,]cicc 12465 Σ*cesum 30633 sigAlgebracsiga 30714 measurescmeas 30802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-disj 4841 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-fv 6130 df-ov 6907 df-esum 30634 df-meas 30803 |
This theorem is referenced by: measxun2 30817 measvunilem 30819 measssd 30822 measres 30829 measdivcstOLD 30831 measdivcst 30832 probcun 31025 totprobd 31033 |
Copyright terms: Public domain | W3C validator |