![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvun | Structured version Visualization version GIF version |
Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
Ref | Expression |
---|---|
measvun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆) | |
2 | measbase 34161 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | ismeas 34163 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
5 | 4 | ibi 267 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
8 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) | |
9 | breq1 5169 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω)) | |
10 | disjeq1 5140 | . . . . 5 ⊢ (𝑦 = 𝐴 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) | |
11 | 9, 10 | anbi12d 631 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥))) |
12 | unieq 4942 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
13 | 12 | fveq2d 6924 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝐴)) |
14 | esumeq1 33998 | . . . . 5 ⊢ (𝑦 = 𝐴 → Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) | |
15 | 13, 14 | eqeq12d 2756 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) ↔ (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥))) |
16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
17 | 16 | rspcv 3631 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
18 | 1, 7, 8, 17 | syl3c 66 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 Disj wdisj 5133 class class class wbr 5166 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 Σ*cesum 33991 sigAlgebracsiga 34072 measurescmeas 34159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-esum 33992 df-meas 34160 |
This theorem is referenced by: measxun2 34174 measvunilem 34176 measssd 34179 measres 34186 measdivcst 34188 measdivcstALTV 34189 probcun 34383 totprobd 34391 |
Copyright terms: Public domain | W3C validator |