| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measvun | Structured version Visualization version GIF version | ||
| Description: The measure of a countable disjoint union is the sum of the measures. (Contributed by Thierry Arnoux, 26-Dec-2016.) |
| Ref | Expression |
|---|---|
| measvun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → 𝐴 ∈ 𝒫 𝑆) | |
| 2 | measbase 34163 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 3 | ismeas 34165 | . . . . . 6 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))))) |
| 5 | 4 | ibi 267 | . . . 4 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)))) |
| 6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥))) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) | |
| 9 | breq1 5098 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≼ ω ↔ 𝐴 ≼ ω)) | |
| 10 | disjeq1 5069 | . . . . 5 ⊢ (𝑦 = 𝐴 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) | |
| 11 | 9, 10 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥))) |
| 12 | unieq 4872 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
| 13 | 12 | fveq2d 6830 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝐴)) |
| 14 | esumeq1 34000 | . . . . 5 ⊢ (𝑦 = 𝐴 → Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) | |
| 15 | 13, 14 | eqeq12d 2745 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥) ↔ (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥))) |
| 16 | 11, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) ↔ ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
| 17 | 16 | rspcv 3575 | . 2 ⊢ (𝐴 ∈ 𝒫 𝑆 → (∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = Σ*𝑥 ∈ 𝑦(𝑀‘𝑥)) → ((𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)))) |
| 18 | 1, 7, 8, 17 | syl3c 66 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝒫 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑀‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑀‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4286 𝒫 cpw 4553 ∪ cuni 4861 Disj wdisj 5062 class class class wbr 5095 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ≼ cdom 8877 0cc0 11028 +∞cpnf 11165 [,]cicc 13269 Σ*cesum 33993 sigAlgebracsiga 34074 measurescmeas 34161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-esum 33994 df-meas 34162 |
| This theorem is referenced by: measxun2 34176 measvunilem 34178 measssd 34181 measres 34188 measdivcst 34190 measdivcstALTV 34191 probcun 34385 totprobd 34393 |
| Copyright terms: Public domain | W3C validator |