Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10916 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 7189 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 0cc0 10580 − cmin 10913 -cneg 10914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-uni 4802 df-iota 6298 df-fv 6347 df-ov 7158 df-neg 10916 |
This theorem is referenced by: negiso 11662 infrenegsup 11665 xnegex 12647 ceilval 13262 monoord2 13456 m1expcl2 13506 sgnval 14500 infcvgaux1i 15265 infcvgaux2i 15266 cnmsgnsubg 20347 evth2 23666 ivth2 24160 mbfinf 24370 mbfi1flimlem 24427 i1fibl 24512 ditgex 24556 dvrec 24659 dvmptsub 24671 dvexp3 24682 rolle 24694 dvlipcn 24698 dvivth 24714 lhop2 24719 dvfsumge 24726 ftc2 24748 plyremlem 25004 advlogexp 25350 logtayl 25355 logccv 25358 dvatan 25625 amgmlem 25679 emcllem7 25691 basellem9 25778 addsqnreup 26131 axlowdimlem7 26846 axlowdimlem8 26847 axlowdimlem9 26848 axlowdimlem13 26852 sgnsval 30958 sgnsf 30959 xrge0iifcv 31409 xrge0iifiso 31410 xrge0iifhom 31412 sgncl 32028 dvtan 35413 ftc1anclem5 35440 ftc1anclem6 35441 ftc2nc 35445 areacirclem1 35451 monotoddzzfi 40284 monotoddzz 40285 oddcomabszz 40286 rngunsnply 40518 infnsuprnmpt 42284 liminfltlem 42840 dvcosax 42962 itgsin0pilem1 42986 fourierdlem41 43184 fourierdlem48 43190 fourierdlem102 43244 fourierdlem114 43256 fourierswlem 43266 hoicvr 43581 hoicvrrex 43589 smfliminflem 43855 zlmodzxzldeplem3 45304 amgmwlem 45794 |
Copyright terms: Public domain | W3C validator |