| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11415 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7424 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 0cc0 11075 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 |
| This theorem is referenced by: negiso 12170 infrenegsup 12173 xnegex 13175 ceilval 13807 monoord2 14005 m1expcl2 14057 sgnval 15061 infcvgaux1i 15830 infcvgaux2i 15831 cnmsgnsubg 21493 evth2 24866 ivth2 25363 mbfinf 25573 mbfi1flimlem 25630 i1fibl 25716 ditgex 25760 dvrec 25866 dvmptsub 25878 dvexp3 25889 rolle 25901 dvlipcn 25906 dvivth 25922 lhop2 25927 dvfsumge 25935 ftc2 25958 plyremlem 26219 advlogexp 26571 logtayl 26576 logccv 26579 dvatan 26852 amgmlem 26907 emcllem7 26919 basellem9 27006 addsqnreup 27361 axlowdimlem7 28882 axlowdimlem8 28883 axlowdimlem9 28884 axlowdimlem13 28888 sgncl 32763 sgnsval 33125 sgnsf 33126 xrge0iifcv 33931 xrge0iifiso 33932 xrge0iifhom 33934 dvtan 37671 ftc1anclem5 37698 ftc1anclem6 37699 ftc2nc 37703 areacirclem1 37709 readvrec 42357 monotoddzzfi 42938 monotoddzz 42939 oddcomabszz 42940 rngunsnply 43165 infnsuprnmpt 45251 liminfltlem 45809 dvcosax 45931 itgsin0pilem1 45955 fourierdlem41 46153 fourierdlem48 46159 fourierdlem102 46213 fourierdlem114 46225 fourierswlem 46235 hoicvr 46553 hoicvrrex 46561 smfliminflem 46835 zlmodzxzldeplem3 48495 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |