| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11344 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7380 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 0cc0 11003 − cmin 11341 -cneg 11342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11344 |
| This theorem is referenced by: negiso 12099 infrenegsup 12102 xnegex 13104 ceilval 13739 monoord2 13937 m1expcl2 13989 sgnval 14992 infcvgaux1i 15761 infcvgaux2i 15762 cnmsgnsubg 21512 evth2 24884 ivth2 25381 mbfinf 25591 mbfi1flimlem 25648 i1fibl 25734 ditgex 25778 dvrec 25884 dvmptsub 25896 dvexp3 25907 rolle 25919 dvlipcn 25924 dvivth 25940 lhop2 25945 dvfsumge 25953 ftc2 25976 plyremlem 26237 advlogexp 26589 logtayl 26594 logccv 26597 dvatan 26870 amgmlem 26925 emcllem7 26937 basellem9 27024 addsqnreup 27379 axlowdimlem7 28924 axlowdimlem8 28925 axlowdimlem9 28926 axlowdimlem13 28930 sgncl 32809 sgnsval 33125 sgnsf 33126 xrge0iifcv 33942 xrge0iifiso 33943 xrge0iifhom 33945 dvtan 37709 ftc1anclem5 37736 ftc1anclem6 37737 ftc2nc 37741 areacirclem1 37747 readvrec 42394 monotoddzzfi 42974 monotoddzz 42975 oddcomabszz 42976 rngunsnply 43201 infnsuprnmpt 45286 liminfltlem 45841 dvcosax 45963 itgsin0pilem1 45987 fourierdlem41 46185 fourierdlem48 46191 fourierdlem102 46245 fourierdlem114 46257 fourierswlem 46267 hoicvr 46585 hoicvrrex 46593 smfliminflem 46867 zlmodzxzldeplem3 48533 amgmwlem 49833 |
| Copyright terms: Public domain | W3C validator |