| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11368 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7387 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 0cc0 11028 − cmin 11365 -cneg 11366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-fv 6494 df-ov 7356 df-neg 11368 |
| This theorem is referenced by: negiso 12123 infrenegsup 12126 xnegex 13128 ceilval 13760 monoord2 13958 m1expcl2 14010 sgnval 15013 infcvgaux1i 15782 infcvgaux2i 15783 cnmsgnsubg 21502 evth2 24875 ivth2 25372 mbfinf 25582 mbfi1flimlem 25639 i1fibl 25725 ditgex 25769 dvrec 25875 dvmptsub 25887 dvexp3 25898 rolle 25910 dvlipcn 25915 dvivth 25931 lhop2 25936 dvfsumge 25944 ftc2 25967 plyremlem 26228 advlogexp 26580 logtayl 26585 logccv 26588 dvatan 26861 amgmlem 26916 emcllem7 26928 basellem9 27015 addsqnreup 27370 axlowdimlem7 28911 axlowdimlem8 28912 axlowdimlem9 28913 axlowdimlem13 28917 sgncl 32789 sgnsval 33116 sgnsf 33117 xrge0iifcv 33900 xrge0iifiso 33901 xrge0iifhom 33903 dvtan 37649 ftc1anclem5 37676 ftc1anclem6 37677 ftc2nc 37681 areacirclem1 37687 readvrec 42335 monotoddzzfi 42915 monotoddzz 42916 oddcomabszz 42917 rngunsnply 43142 infnsuprnmpt 45228 liminfltlem 45786 dvcosax 45908 itgsin0pilem1 45932 fourierdlem41 46130 fourierdlem48 46136 fourierdlem102 46190 fourierdlem114 46202 fourierswlem 46212 hoicvr 46530 hoicvrrex 46538 smfliminflem 46812 zlmodzxzldeplem3 48488 amgmwlem 49788 |
| Copyright terms: Public domain | W3C validator |