| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11354 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7386 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 0cc0 11013 − cmin 11351 -cneg 11352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 df-fv 6494 df-ov 7355 df-neg 11354 |
| This theorem is referenced by: negiso 12109 infrenegsup 12112 xnegex 13109 ceilval 13744 monoord2 13942 m1expcl2 13994 sgnval 14997 infcvgaux1i 15766 infcvgaux2i 15767 cnmsgnsubg 21516 evth2 24887 ivth2 25384 mbfinf 25594 mbfi1flimlem 25651 i1fibl 25737 ditgex 25781 dvrec 25887 dvmptsub 25899 dvexp3 25910 rolle 25922 dvlipcn 25927 dvivth 25943 lhop2 25948 dvfsumge 25956 ftc2 25979 plyremlem 26240 advlogexp 26592 logtayl 26597 logccv 26600 dvatan 26873 amgmlem 26928 emcllem7 26940 basellem9 27027 addsqnreup 27382 axlowdimlem7 28928 axlowdimlem8 28929 axlowdimlem9 28930 axlowdimlem13 28934 sgncl 32819 sgnsval 33137 sgnsf 33138 xrge0iifcv 33968 xrge0iifiso 33969 xrge0iifhom 33971 dvtan 37730 ftc1anclem5 37757 ftc1anclem6 37758 ftc2nc 37762 areacirclem1 37768 readvrec 42480 monotoddzzfi 43059 monotoddzz 43060 oddcomabszz 43061 rngunsnply 43286 infnsuprnmpt 45371 liminfltlem 45926 dvcosax 46048 itgsin0pilem1 46072 fourierdlem41 46270 fourierdlem48 46276 fourierdlem102 46330 fourierdlem114 46342 fourierswlem 46352 hoicvr 46670 hoicvrrex 46678 smfliminflem 46952 zlmodzxzldeplem3 48627 amgmwlem 49927 |
| Copyright terms: Public domain | W3C validator |