| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11469 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7439 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 0cc0 11129 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 |
| This theorem is referenced by: negiso 12222 infrenegsup 12225 xnegex 13224 ceilval 13855 monoord2 14051 m1expcl2 14103 sgnval 15107 infcvgaux1i 15873 infcvgaux2i 15874 cnmsgnsubg 21537 evth2 24910 ivth2 25408 mbfinf 25618 mbfi1flimlem 25675 i1fibl 25761 ditgex 25805 dvrec 25911 dvmptsub 25923 dvexp3 25934 rolle 25946 dvlipcn 25951 dvivth 25967 lhop2 25972 dvfsumge 25980 ftc2 26003 plyremlem 26264 advlogexp 26616 logtayl 26621 logccv 26624 dvatan 26897 amgmlem 26952 emcllem7 26964 basellem9 27051 addsqnreup 27406 axlowdimlem7 28927 axlowdimlem8 28928 axlowdimlem9 28929 axlowdimlem13 28933 sgncl 32810 sgnsval 33172 sgnsf 33173 xrge0iifcv 33965 xrge0iifiso 33966 xrge0iifhom 33968 dvtan 37694 ftc1anclem5 37721 ftc1anclem6 37722 ftc2nc 37726 areacirclem1 37732 readvrec 42405 monotoddzzfi 42966 monotoddzz 42967 oddcomabszz 42968 rngunsnply 43193 infnsuprnmpt 45274 liminfltlem 45833 dvcosax 45955 itgsin0pilem1 45979 fourierdlem41 46177 fourierdlem48 46183 fourierdlem102 46237 fourierdlem114 46249 fourierswlem 46259 hoicvr 46577 hoicvrrex 46585 smfliminflem 46859 zlmodzxzldeplem3 48478 amgmwlem 49666 |
| Copyright terms: Public domain | W3C validator |