![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10726 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 7056 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2083 Vcvv 3440 0cc0 10390 − cmin 10723 -cneg 10724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-nul 5108 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-sn 4479 df-pr 4481 df-uni 4752 df-iota 6196 df-fv 6240 df-ov 7026 df-neg 10726 |
This theorem is referenced by: negiso 11475 infrenegsup 11478 xnegex 12455 ceilval 13062 monoord2 13255 m1expcl2 13305 sgnval 14285 infcvgaux1i 15049 infcvgaux2i 15050 cnmsgnsubg 20407 evth2 23251 ivth2 23743 mbfinf 23953 mbfi1flimlem 24010 i1fibl 24095 ditgex 24137 dvrec 24239 dvmptsub 24251 dvexp3 24262 rolle 24274 dvlipcn 24278 dvivth 24294 lhop2 24299 dvfsumge 24306 ftc2 24328 plyremlem 24580 advlogexp 24923 logtayl 24928 logccv 24931 dvatan 25198 amgmlem 25253 emcllem7 25265 basellem9 25352 addsqnreup 25705 axlowdimlem7 26421 axlowdimlem8 26422 axlowdimlem9 26423 axlowdimlem13 26427 sgnsval 30437 sgnsf 30438 xrge0iifcv 30790 xrge0iifiso 30791 xrge0iifhom 30793 sgncl 31409 dvtan 34494 ftc1anclem5 34523 ftc1anclem6 34524 ftc2nc 34528 areacirclem1 34534 monotoddzzfi 39045 monotoddzz 39046 oddcomabszz 39047 rngunsnply 39279 infnsuprnmpt 41084 liminfltlem 41648 dvcosax 41774 itgsin0pilem1 41798 fourierdlem41 41997 fourierdlem48 42003 fourierdlem102 42057 fourierdlem114 42069 fourierswlem 42079 hoicvr 42394 hoicvrrex 42402 smfliminflem 42668 zlmodzxzldeplem3 44059 amgmwlem 44405 |
Copyright terms: Public domain | W3C validator |