![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11523 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 7482 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 |
This theorem is referenced by: negiso 12275 infrenegsup 12278 xnegex 13270 ceilval 13889 monoord2 14084 m1expcl2 14136 sgnval 15137 infcvgaux1i 15905 infcvgaux2i 15906 cnmsgnsubg 21618 evth2 25011 ivth2 25509 mbfinf 25719 mbfi1flimlem 25777 i1fibl 25863 ditgex 25907 dvrec 26013 dvmptsub 26025 dvexp3 26036 rolle 26048 dvlipcn 26053 dvivth 26069 lhop2 26074 dvfsumge 26082 ftc2 26105 plyremlem 26364 advlogexp 26715 logtayl 26720 logccv 26723 dvatan 26996 amgmlem 27051 emcllem7 27063 basellem9 27150 addsqnreup 27505 axlowdimlem7 28981 axlowdimlem8 28982 axlowdimlem9 28983 axlowdimlem13 28987 sgnsval 33154 sgnsf 33155 xrge0iifcv 33880 xrge0iifiso 33881 xrge0iifhom 33883 sgncl 34503 dvtan 37630 ftc1anclem5 37657 ftc1anclem6 37658 ftc2nc 37662 areacirclem1 37668 monotoddzzfi 42899 monotoddzz 42900 oddcomabszz 42901 rngunsnply 43130 infnsuprnmpt 45159 liminfltlem 45725 dvcosax 45847 itgsin0pilem1 45871 fourierdlem41 46069 fourierdlem48 46075 fourierdlem102 46129 fourierdlem114 46141 fourierswlem 46151 hoicvr 46469 hoicvrrex 46477 smfliminflem 46751 zlmodzxzldeplem3 48231 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |