Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11191 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 7302 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 0cc0 10855 − cmin 11188 -cneg 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 df-uni 4845 df-iota 6388 df-fv 6438 df-ov 7271 df-neg 11191 |
This theorem is referenced by: negiso 11938 infrenegsup 11941 xnegex 12924 ceilval 13539 monoord2 13735 m1expcl2 13785 sgnval 14780 infcvgaux1i 15550 infcvgaux2i 15551 cnmsgnsubg 20763 evth2 24104 ivth2 24600 mbfinf 24810 mbfi1flimlem 24868 i1fibl 24953 ditgex 24997 dvrec 25100 dvmptsub 25112 dvexp3 25123 rolle 25135 dvlipcn 25139 dvivth 25155 lhop2 25160 dvfsumge 25167 ftc2 25189 plyremlem 25445 advlogexp 25791 logtayl 25796 logccv 25799 dvatan 26066 amgmlem 26120 emcllem7 26132 basellem9 26219 addsqnreup 26572 axlowdimlem7 27297 axlowdimlem8 27298 axlowdimlem9 27299 axlowdimlem13 27303 sgnsval 31407 sgnsf 31408 xrge0iifcv 31863 xrge0iifiso 31864 xrge0iifhom 31866 sgncl 32484 dvtan 35806 ftc1anclem5 35833 ftc1anclem6 35834 ftc2nc 35838 areacirclem1 35844 monotoddzzfi 40744 monotoddzz 40745 oddcomabszz 40746 rngunsnply 40978 infnsuprnmpt 42749 liminfltlem 43299 dvcosax 43421 itgsin0pilem1 43445 fourierdlem41 43643 fourierdlem48 43649 fourierdlem102 43703 fourierdlem114 43715 fourierswlem 43725 hoicvr 44040 hoicvrrex 44048 smfliminflem 44314 zlmodzxzldeplem3 45795 amgmwlem 46458 |
Copyright terms: Public domain | W3C validator |