| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version | ||
| Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| negex | ⊢ -𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11408 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 2 | 1 | ovexi 7421 | 1 ⊢ -𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 0cc0 11068 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 |
| This theorem is referenced by: negiso 12163 infrenegsup 12166 xnegex 13168 ceilval 13800 monoord2 13998 m1expcl2 14050 sgnval 15054 infcvgaux1i 15823 infcvgaux2i 15824 cnmsgnsubg 21486 evth2 24859 ivth2 25356 mbfinf 25566 mbfi1flimlem 25623 i1fibl 25709 ditgex 25753 dvrec 25859 dvmptsub 25871 dvexp3 25882 rolle 25894 dvlipcn 25899 dvivth 25915 lhop2 25920 dvfsumge 25928 ftc2 25951 plyremlem 26212 advlogexp 26564 logtayl 26569 logccv 26572 dvatan 26845 amgmlem 26900 emcllem7 26912 basellem9 26999 addsqnreup 27354 axlowdimlem7 28875 axlowdimlem8 28876 axlowdimlem9 28877 axlowdimlem13 28881 sgncl 32756 sgnsval 33118 sgnsf 33119 xrge0iifcv 33924 xrge0iifiso 33925 xrge0iifhom 33927 dvtan 37664 ftc1anclem5 37691 ftc1anclem6 37692 ftc2nc 37696 areacirclem1 37702 readvrec 42350 monotoddzzfi 42931 monotoddzz 42932 oddcomabszz 42933 rngunsnply 43158 infnsuprnmpt 45244 liminfltlem 45802 dvcosax 45924 itgsin0pilem1 45948 fourierdlem41 46146 fourierdlem48 46152 fourierdlem102 46206 fourierdlem114 46218 fourierswlem 46228 hoicvr 46546 hoicvrrex 46554 smfliminflem 46828 zlmodzxzldeplem3 48491 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |