Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negex | Structured version Visualization version GIF version |
Description: A negative is a set. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
negex | ⊢ -𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11254 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
2 | 1 | ovexi 7341 | 1 ⊢ -𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3437 0cc0 10917 − cmin 11251 -cneg 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-pr 4568 df-uni 4845 df-iota 6410 df-fv 6466 df-ov 7310 df-neg 11254 |
This theorem is referenced by: negiso 12001 infrenegsup 12004 xnegex 12988 ceilval 13604 monoord2 13800 m1expcl2 13850 sgnval 14844 infcvgaux1i 15614 infcvgaux2i 15615 cnmsgnsubg 20827 evth2 24168 ivth2 24664 mbfinf 24874 mbfi1flimlem 24932 i1fibl 25017 ditgex 25061 dvrec 25164 dvmptsub 25176 dvexp3 25187 rolle 25199 dvlipcn 25203 dvivth 25219 lhop2 25224 dvfsumge 25231 ftc2 25253 plyremlem 25509 advlogexp 25855 logtayl 25860 logccv 25863 dvatan 26130 amgmlem 26184 emcllem7 26196 basellem9 26283 addsqnreup 26636 axlowdimlem7 27361 axlowdimlem8 27362 axlowdimlem9 27363 axlowdimlem13 27367 sgnsval 31473 sgnsf 31474 xrge0iifcv 31929 xrge0iifiso 31930 xrge0iifhom 31932 sgncl 32550 dvtan 35871 ftc1anclem5 35898 ftc1anclem6 35899 ftc2nc 35903 areacirclem1 35909 monotoddzzfi 40802 monotoddzz 40803 oddcomabszz 40804 rngunsnply 41036 infnsuprnmpt 42841 liminfltlem 43394 dvcosax 43516 itgsin0pilem1 43540 fourierdlem41 43738 fourierdlem48 43744 fourierdlem102 43798 fourierdlem114 43810 fourierswlem 43820 hoicvr 44136 hoicvrrex 44144 smfliminflem 44417 zlmodzxzldeplem3 45901 amgmwlem 46564 |
Copyright terms: Public domain | W3C validator |