MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm Structured version   Visualization version   GIF version

Theorem eldm 5925
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldmg 5923 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777  wcel 2108  Vcvv 3488   class class class wbr 5166  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-dm 5710
This theorem is referenced by:  dmi  5946  dmep  5948  dmxp  5953  dmcoss  5997  dmcosseq  5999  dmcosseqOLD  6000  dminss  6184  dmsnn0  6238  dffun7  6605  dffun8  6606  fnres  6707  opabiota  7004  fndmdif  7075  dff3  7134  frxp  8167  suppvalbr  8205  reldmtpos  8275  dmtpos  8279  aceq3lem  10189  axdc2lem  10517  axdclem2  10589  fpwwe2lem11  10710  nqerf  10999  shftdm  15120  bcthlem4  25380  dchrisumlem3  27553  eulerpath  30273  fundmpss  35730  elfix  35867  fnsingle  35883  fnimage  35893  funpartlem  35906  dfrecs2  35914  dfrdg4  35915  knoppcnlem9  36467  prtlem16  38825  undmrnresiss  43566
  Copyright terms: Public domain W3C validator