MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm Structured version   Visualization version   GIF version

Theorem eldm 5839
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldmg 5837 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5089  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  dmi  5860  dmep  5862  dmxp  5868  dmcoss  5913  dmcossOLD  5914  dmcosseq  5916  dmcosseqOLD  5917  dmcosseqOLDOLD  5918  dminss  6100  dmsnn0  6154  dffun7  6508  dffun8  6509  fnres  6608  opabiota  6904  fndmdif  6975  dff3  7033  frxp  8056  suppvalbr  8094  reldmtpos  8164  dmtpos  8168  aceq3lem  10011  axdc2lem  10339  axdclem2  10411  fpwwe2lem11  10532  nqerf  10821  shftdm  14978  bcthlem4  25254  dchrisumlem3  27429  eulerpath  30221  fundmpss  35811  elfix  35945  fnsingle  35961  fnimage  35971  funpartlem  35986  dfrecs2  35994  dfrdg4  35995  knoppcnlem9  36545  prtlem16  38967  undmrnresiss  43696  isoval2  49135  termolmd  49770
  Copyright terms: Public domain W3C validator