Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 5796 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: dmi 5819 dmep 5821 dmcoss 5869 dmcosseq 5871 dminss 6045 dmsnn0 6099 dffun7 6445 dffun8 6446 fnres 6543 opabiota 6833 fndmdif 6901 dff3 6958 frxp 7938 suppvalbr 7952 reldmtpos 8021 dmtpos 8025 aceq3lem 9807 axdc2lem 10135 axdclem2 10207 fpwwe2lem11 10328 nqerf 10617 shftdm 14710 bcthlem4 24396 dchrisumlem3 26544 eulerpath 28506 fundmpss 33646 elfix 34132 fnsingle 34148 fnimage 34158 funpartlem 34171 dfrecs2 34179 dfrdg4 34180 knoppcnlem9 34608 prtlem16 36810 undmrnresiss 41101 |
Copyright terms: Public domain | W3C validator |