Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 5806 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-dm 5600 |
This theorem is referenced by: dmi 5829 dmep 5831 dmcoss 5879 dmcosseq 5881 dminss 6055 dmsnn0 6109 dffun7 6459 dffun8 6460 fnres 6557 opabiota 6848 fndmdif 6916 dff3 6973 frxp 7958 suppvalbr 7972 reldmtpos 8041 dmtpos 8045 aceq3lem 9877 axdc2lem 10205 axdclem2 10277 fpwwe2lem11 10398 nqerf 10687 shftdm 14780 bcthlem4 24489 dchrisumlem3 26637 eulerpath 28601 fundmpss 33736 elfix 34201 fnsingle 34217 fnimage 34227 funpartlem 34240 dfrecs2 34248 dfrdg4 34249 knoppcnlem9 34677 prtlem16 36879 undmrnresiss 41182 |
Copyright terms: Public domain | W3C validator |