| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldmg 5878 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-dm 5664 |
| This theorem is referenced by: dmi 5901 dmep 5903 dmxp 5908 dmcoss 5954 dmcosseq 5956 dmcosseqOLD 5957 dminss 6142 dmsnn0 6196 dffun7 6563 dffun8 6564 fnres 6665 opabiota 6961 fndmdif 7032 dff3 7090 frxp 8125 suppvalbr 8163 reldmtpos 8233 dmtpos 8237 aceq3lem 10134 axdc2lem 10462 axdclem2 10534 fpwwe2lem11 10655 nqerf 10944 shftdm 15090 bcthlem4 25279 dchrisumlem3 27454 eulerpath 30222 fundmpss 35784 elfix 35921 fnsingle 35937 fnimage 35947 funpartlem 35960 dfrecs2 35968 dfrdg4 35969 knoppcnlem9 36519 prtlem16 38887 undmrnresiss 43628 |
| Copyright terms: Public domain | W3C validator |