| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldmg 5865 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: dmi 5888 dmep 5890 dmxp 5895 dmcoss 5941 dmcosseq 5943 dmcosseqOLD 5944 dminss 6129 dmsnn0 6183 dffun7 6546 dffun8 6547 fnres 6648 opabiota 6946 fndmdif 7017 dff3 7075 frxp 8108 suppvalbr 8146 reldmtpos 8216 dmtpos 8220 aceq3lem 10080 axdc2lem 10408 axdclem2 10480 fpwwe2lem11 10601 nqerf 10890 shftdm 15044 bcthlem4 25234 dchrisumlem3 27409 eulerpath 30177 fundmpss 35761 elfix 35898 fnsingle 35914 fnimage 35924 funpartlem 35937 dfrecs2 35945 dfrdg4 35946 knoppcnlem9 36496 prtlem16 38869 undmrnresiss 43600 isoval2 49028 termolmd 49663 |
| Copyright terms: Public domain | W3C validator |