![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 5923 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: dmi 5946 dmep 5948 dmxp 5953 dmcoss 5997 dmcosseq 5999 dmcosseqOLD 6000 dminss 6184 dmsnn0 6238 dffun7 6605 dffun8 6606 fnres 6707 opabiota 7004 fndmdif 7075 dff3 7134 frxp 8167 suppvalbr 8205 reldmtpos 8275 dmtpos 8279 aceq3lem 10189 axdc2lem 10517 axdclem2 10589 fpwwe2lem11 10710 nqerf 10999 shftdm 15120 bcthlem4 25380 dchrisumlem3 27553 eulerpath 30273 fundmpss 35730 elfix 35867 fnsingle 35883 fnimage 35893 funpartlem 35906 dfrecs2 35914 dfrdg4 35915 knoppcnlem9 36467 prtlem16 38825 undmrnresiss 43566 |
Copyright terms: Public domain | W3C validator |