![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 5911 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-dm 5698 |
This theorem is referenced by: dmi 5934 dmep 5936 dmxp 5941 dmcoss 5987 dmcosseq 5989 dmcosseqOLD 5990 dminss 6174 dmsnn0 6228 dffun7 6594 dffun8 6595 fnres 6695 opabiota 6990 fndmdif 7061 dff3 7119 frxp 8149 suppvalbr 8187 reldmtpos 8257 dmtpos 8261 aceq3lem 10157 axdc2lem 10485 axdclem2 10557 fpwwe2lem11 10678 nqerf 10967 shftdm 15106 bcthlem4 25374 dchrisumlem3 27549 eulerpath 30269 fundmpss 35747 elfix 35884 fnsingle 35900 fnimage 35910 funpartlem 35923 dfrecs2 35931 dfrdg4 35932 knoppcnlem9 36483 prtlem16 38850 undmrnresiss 43593 |
Copyright terms: Public domain | W3C validator |