MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm Structured version   Visualization version   GIF version

Theorem eldm 5880
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldmg 5878 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119  dom cdm 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-dm 5664
This theorem is referenced by:  dmi  5901  dmep  5903  dmxp  5908  dmcoss  5954  dmcosseq  5956  dmcosseqOLD  5957  dminss  6142  dmsnn0  6196  dffun7  6563  dffun8  6564  fnres  6665  opabiota  6961  fndmdif  7032  dff3  7090  frxp  8125  suppvalbr  8163  reldmtpos  8233  dmtpos  8237  aceq3lem  10134  axdc2lem  10462  axdclem2  10534  fpwwe2lem11  10655  nqerf  10944  shftdm  15090  bcthlem4  25279  dchrisumlem3  27454  eulerpath  30222  fundmpss  35784  elfix  35921  fnsingle  35937  fnimage  35947  funpartlem  35960  dfrecs2  35968  dfrdg4  35969  knoppcnlem9  36519  prtlem16  38887  undmrnresiss  43628
  Copyright terms: Public domain W3C validator