Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldmg 5807 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: dmi 5830 dmep 5832 dmcoss 5880 dmcosseq 5882 dminss 6056 dmsnn0 6110 dffun7 6461 dffun8 6462 fnres 6559 opabiota 6851 fndmdif 6919 dff3 6976 frxp 7967 suppvalbr 7981 reldmtpos 8050 dmtpos 8054 aceq3lem 9876 axdc2lem 10204 axdclem2 10276 fpwwe2lem11 10397 nqerf 10686 shftdm 14782 bcthlem4 24491 dchrisumlem3 26639 eulerpath 28605 fundmpss 33740 elfix 34205 fnsingle 34221 fnimage 34231 funpartlem 34244 dfrecs2 34252 dfrdg4 34253 knoppcnlem9 34681 prtlem16 36883 undmrnresiss 41212 |
Copyright terms: Public domain | W3C validator |