| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldmg 5852 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: dmi 5875 dmep 5877 dmxp 5882 dmcoss 5927 dmcosseq 5929 dmcosseqOLD 5930 dminss 6114 dmsnn0 6168 dffun7 6527 dffun8 6528 fnres 6627 opabiota 6925 fndmdif 6996 dff3 7054 frxp 8082 suppvalbr 8120 reldmtpos 8190 dmtpos 8194 aceq3lem 10049 axdc2lem 10377 axdclem2 10449 fpwwe2lem11 10570 nqerf 10859 shftdm 15013 bcthlem4 25260 dchrisumlem3 27435 eulerpath 30220 fundmpss 35747 elfix 35884 fnsingle 35900 fnimage 35910 funpartlem 35923 dfrecs2 35931 dfrdg4 35932 knoppcnlem9 36482 prtlem16 38855 undmrnresiss 43586 isoval2 49017 termolmd 49652 |
| Copyright terms: Public domain | W3C validator |