| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldmg 5841 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: dmi 5864 dmep 5866 dmxp 5871 dmcoss 5916 dmcossOLD 5917 dmcosseq 5919 dmcosseqOLD 5920 dmcosseqOLDOLD 5921 dminss 6102 dmsnn0 6156 dffun7 6509 dffun8 6510 fnres 6609 opabiota 6905 fndmdif 6976 dff3 7034 frxp 8059 suppvalbr 8097 reldmtpos 8167 dmtpos 8171 aceq3lem 10014 axdc2lem 10342 axdclem2 10414 fpwwe2lem11 10535 nqerf 10824 shftdm 14978 bcthlem4 25225 dchrisumlem3 27400 eulerpath 30189 fundmpss 35760 elfix 35897 fnsingle 35913 fnimage 35923 funpartlem 35936 dfrecs2 35944 dfrdg4 35945 knoppcnlem9 36495 prtlem16 38868 undmrnresiss 43597 isoval2 49040 termolmd 49675 |
| Copyright terms: Public domain | W3C validator |