| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm | Structured version Visualization version GIF version | ||
| Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| eldm.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eldm | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eldmg 5837 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: dmi 5860 dmep 5862 dmxp 5868 dmcoss 5913 dmcossOLD 5914 dmcosseq 5916 dmcosseqOLD 5917 dmcosseqOLDOLD 5918 dminss 6100 dmsnn0 6154 dffun7 6508 dffun8 6509 fnres 6608 opabiota 6904 fndmdif 6975 dff3 7033 frxp 8056 suppvalbr 8094 reldmtpos 8164 dmtpos 8168 aceq3lem 10011 axdc2lem 10339 axdclem2 10411 fpwwe2lem11 10532 nqerf 10821 shftdm 14978 bcthlem4 25254 dchrisumlem3 27429 eulerpath 30221 fundmpss 35811 elfix 35945 fnsingle 35961 fnimage 35971 funpartlem 35986 dfrecs2 35994 dfrdg4 35995 knoppcnlem9 36545 prtlem16 38967 undmrnresiss 43696 isoval2 49135 termolmd 49770 |
| Copyright terms: Public domain | W3C validator |