MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmv Structured version   Visualization version   GIF version

Theorem dmv 5947
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
Assertion
Ref Expression
dmv dom V = V

Proof of Theorem dmv
StepHypRef Expression
1 ssv 4033 . 2 dom V ⊆ V
2 dmi 5946 . . 3 dom I = V
3 ssv 4033 . . . 4 I ⊆ V
4 dmss 5927 . . . 4 ( I ⊆ V → dom I ⊆ dom V)
53, 4ax-mp 5 . . 3 dom I ⊆ dom V
62, 5eqsstrri 4044 . 2 V ⊆ dom V
71, 6eqssi 4025 1 dom V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  wss 3976   I cid 5592  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-dm 5710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator