![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmv | Structured version Visualization version GIF version |
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
Ref | Expression |
---|---|
dmv | ⊢ dom V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . 2 ⊢ dom V ⊆ V | |
2 | dmi 5946 | . . 3 ⊢ dom I = V | |
3 | ssv 4033 | . . . 4 ⊢ I ⊆ V | |
4 | dmss 5927 | . . . 4 ⊢ ( I ⊆ V → dom I ⊆ dom V) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom I ⊆ dom V |
6 | 2, 5 | eqsstrri 4044 | . 2 ⊢ V ⊆ dom V |
7 | 1, 6 | eqssi 4025 | 1 ⊢ dom V = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ⊆ wss 3976 I cid 5592 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-dm 5710 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |