| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmv | Structured version Visualization version GIF version | ||
| Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
| Ref | Expression |
|---|---|
| dmv | ⊢ dom V = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3956 | . 2 ⊢ dom V ⊆ V | |
| 2 | dmi 5868 | . . 3 ⊢ dom I = V | |
| 3 | ssv 3956 | . . . 4 ⊢ I ⊆ V | |
| 4 | dmss 5849 | . . . 4 ⊢ ( I ⊆ V → dom I ⊆ dom V) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ dom I ⊆ dom V |
| 6 | 2, 5 | eqsstrri 3979 | . 2 ⊢ V ⊆ dom V |
| 7 | 1, 6 | eqssi 3948 | 1 ⊢ dom V = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3438 ⊆ wss 3899 I cid 5515 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-dm 5631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |