MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmv Structured version   Visualization version   GIF version

Theorem dmv 5913
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
Assertion
Ref Expression
dmv dom V = V

Proof of Theorem dmv
StepHypRef Expression
1 ssv 3999 . 2 dom V ⊆ V
2 dmi 5912 . . 3 dom I = V
3 ssv 3999 . . . 4 I ⊆ V
4 dmss 5893 . . . 4 ( I ⊆ V → dom I ⊆ dom V)
53, 4ax-mp 5 . . 3 dom I ⊆ dom V
62, 5eqsstrri 4010 . 2 V ⊆ dom V
71, 6eqssi 3991 1 dom V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3466  wss 3941   I cid 5564  dom cdm 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-dm 5677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator