MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmv Structured version   Visualization version   GIF version

Theorem dmv 5913
Description: The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
Assertion
Ref Expression
dmv dom V = V

Proof of Theorem dmv
StepHypRef Expression
1 ssv 3988 . 2 dom V ⊆ V
2 dmi 5912 . . 3 dom I = V
3 ssv 3988 . . . 4 I ⊆ V
4 dmss 5893 . . . 4 ( I ⊆ V → dom I ⊆ dom V)
53, 4ax-mp 5 . . 3 dom I ⊆ dom V
62, 5eqsstrri 4011 . 2 V ⊆ dom V
71, 6eqssi 3980 1 dom V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463  wss 3931   I cid 5557  dom cdm 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-dm 5675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator