| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnopab | Structured version Visualization version GIF version | ||
| Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| rnopab | ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5189 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab2 5190 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 1, 2 | dfrnf 5930 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
| 4 | df-br 5120 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | opabidw 5499 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑥𝜑) |
| 8 | 7 | abbii 2802 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑦 ∣ ∃𝑥𝜑} |
| 9 | 3, 8 | eqtri 2758 | 1 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 〈cop 4607 class class class wbr 5119 {copab 5181 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: rnopabss 5935 rnopab3 5936 rnmpt 5937 mptpreima 6227 rnoprab 7512 pwfir 9327 marypha2lem4 9450 hartogslem1 9556 rnttrcl 9736 axdc2lem 10462 abrexdomjm 32488 abrexexd 32490 lsmsnorb 33406 satfrnmapom 35392 rnmptsn 37353 abrexdom 37754 rncnvepres 38321 imaopab 42282 tfsconcatrn 43366 modelaxreplem3 45005 |
| Copyright terms: Public domain | W3C validator |