| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnopab | Structured version Visualization version GIF version | ||
| Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| rnopab | ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5180 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab2 5181 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 1, 2 | dfrnf 5917 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
| 4 | df-br 5111 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | opabidw 5487 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 7 | 6 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑥𝜑) |
| 8 | 7 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑦 ∣ ∃𝑥𝜑} |
| 9 | 3, 8 | eqtri 2753 | 1 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 〈cop 4598 class class class wbr 5110 {copab 5172 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: rnopabss 5922 rnopab3 5923 rnmpt 5924 mptpreima 6214 rnoprab 7497 pwfir 9273 marypha2lem4 9396 hartogslem1 9502 rnttrcl 9682 axdc2lem 10408 abrexdomjm 32443 abrexexd 32445 lsmsnorb 33369 satfrnmapom 35364 rnmptsn 37330 abrexdom 37731 rncnvepres 38298 imaopab 42226 tfsconcatrn 43338 modelaxreplem3 44977 |
| Copyright terms: Public domain | W3C validator |