MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopab Structured version   Visualization version   GIF version

Theorem rnopab 5953
Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
rnopab ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopab
StepHypRef Expression
1 nfopab1 5218 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab2 5219 . . 3 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
31, 2dfrnf 5949 . 2 ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦}
4 df-br 5149 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabidw 5524 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
64, 5bitri 274 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
76exbii 1850 . . 3 (∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑥𝜑)
87abbii 2802 . 2 {𝑦 ∣ ∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑦 ∣ ∃𝑥𝜑}
93, 8eqtri 2760 1 ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1781  wcel 2106  {cab 2709  cop 4634   class class class wbr 5148  {copab 5210  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  rnmpt  5954  mptpreima  6237  rnoprab  7514  pwfir  9178  marypha2lem4  9435  hartogslem1  9539  rnttrcl  9719  axdc2lem  10445  abrexdomjm  31999  abrexexd  32001  lsmsnorb  32763  satfrnmapom  34647  rnmptsn  36519  abrexdom  36901  rncnvepres  37475  imaopab  41356  tfsconcatrn  42394
  Copyright terms: Public domain W3C validator