Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrn | ⊢ Ⅎ𝑥ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5591 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | nfrn.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcnv 5776 | . . 3 ⊢ Ⅎ𝑥◡𝐴 |
4 | 3 | nfdm 5849 | . 2 ⊢ Ⅎ𝑥dom ◡𝐴 |
5 | 1, 4 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥ran 𝐴 |
Copyright terms: Public domain | W3C validator |