Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmopabelb | Structured version Visualization version GIF version |
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
Ref | Expression |
---|---|
dmopabel.d | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dmopabelb | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab 5837 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑}) |
3 | dmopabel.d | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
4 | 3 | exbidv 1922 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓)) |
5 | eqid 2736 | . . 3 ⊢ {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
6 | 4, 5 | elab2g 3616 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓)) |
7 | 2, 6 | bitrid 283 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 {copab 5143 dom cdm 5600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-dm 5610 |
This theorem is referenced by: dmopab2rex 5839 dmopab3rexdif 33416 |
Copyright terms: Public domain | W3C validator |