Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmopabelb | Structured version Visualization version GIF version |
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
Ref | Expression |
---|---|
dmopabel.d | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dmopabelb | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab 5821 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑}) |
3 | dmopabel.d | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
4 | 3 | exbidv 1927 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓)) |
5 | eqid 2739 | . . 3 ⊢ {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
6 | 4, 5 | elab2g 3612 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓)) |
7 | 2, 6 | syl5bb 282 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 {copab 5140 dom cdm 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-dm 5598 |
This theorem is referenced by: dmopab2rex 5823 dmopab3rexdif 33346 |
Copyright terms: Public domain | W3C validator |