| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmopabelb | Structured version Visualization version GIF version | ||
| Description: A set is an element of the domain of an ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
| Ref | Expression |
|---|---|
| dmopabel.d | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dmopabelb | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab 5854 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑}) |
| 3 | dmopabel.d | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | exbidv 1922 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓)) |
| 5 | eqid 2731 | . . 3 ⊢ {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
| 6 | 4, 5 | elab2g 3631 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓)) |
| 7 | 2, 6 | bitrid 283 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 {copab 5151 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-dm 5624 |
| This theorem is referenced by: dmopab2rex 5856 dmopab3rexdif 35449 |
| Copyright terms: Public domain | W3C validator |