MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopabelb Structured version   Visualization version   GIF version

Theorem dmopabelb 5785
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.)
Hypothesis
Ref Expression
dmopabel.d (𝑥 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
dmopabelb (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑋,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dmopabelb
StepHypRef Expression
1 dmopab 5784 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
21eleq2i 2904 . 2 (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑})
3 dmopabel.d . . . 4 (𝑥 = 𝑋 → (𝜑𝜓))
43exbidv 1922 . . 3 (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓))
5 eqid 2821 . . 3 {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑}
64, 5elab2g 3668 . 2 (𝑋𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓))
72, 6syl5bb 285 1 (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wex 1780  wcel 2114  {cab 2799  {copab 5128  dom cdm 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-dm 5565
This theorem is referenced by:  dmopab2rex  5786  dmopab3rexdif  32652
  Copyright terms: Public domain W3C validator