MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopabelb Structured version   Visualization version   GIF version

Theorem dmopabelb 5941
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.)
Hypothesis
Ref Expression
dmopabel.d (𝑥 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
dmopabelb (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑋,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dmopabelb
StepHypRef Expression
1 dmopab 5940 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
21eleq2i 2836 . 2 (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑})
3 dmopabel.d . . . 4 (𝑥 = 𝑋 → (𝜑𝜓))
43exbidv 1920 . . 3 (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓))
5 eqid 2740 . . 3 {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑}
64, 5elab2g 3696 . 2 (𝑋𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓))
72, 6bitrid 283 1 (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  {cab 2717  {copab 5228  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-dm 5710
This theorem is referenced by:  dmopab2rex  5942  dmopab3rexdif  35373
  Copyright terms: Public domain W3C validator