MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopabelb Structured version   Visualization version   GIF version

Theorem dmopabelb 5822
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.)
Hypothesis
Ref Expression
dmopabel.d (𝑥 = 𝑋 → (𝜑𝜓))
Assertion
Ref Expression
dmopabelb (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑋,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dmopabelb
StepHypRef Expression
1 dmopab 5821 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
21eleq2i 2831 . 2 (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑})
3 dmopabel.d . . . 4 (𝑥 = 𝑋 → (𝜑𝜓))
43exbidv 1927 . . 3 (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓))
5 eqid 2739 . . 3 {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑}
64, 5elab2g 3612 . 2 (𝑋𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓))
72, 6syl5bb 282 1 (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wex 1785  wcel 2109  {cab 2716  {copab 5140  dom cdm 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-dm 5598
This theorem is referenced by:  dmopab2rex  5823  dmopab3rexdif  33346
  Copyright terms: Public domain W3C validator