![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmopabelb | Structured version Visualization version GIF version |
Description: A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
Ref | Expression |
---|---|
dmopabel.d | ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dmopabelb | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab 5915 | . . 3 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑}) |
3 | dmopabel.d | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | |
4 | 3 | exbidv 1924 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦𝜑 ↔ ∃𝑦𝜓)) |
5 | eqid 2732 | . . 3 ⊢ {𝑥 ∣ ∃𝑦𝜑} = {𝑥 ∣ ∃𝑦𝜑} | |
6 | 4, 5 | elab2g 3670 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ ∃𝑦𝜑} ↔ ∃𝑦𝜓)) |
7 | 2, 6 | bitrid 282 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 {copab 5210 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-dm 5686 |
This theorem is referenced by: dmopab2rex 5917 dmopab3rexdif 34391 |
Copyright terms: Public domain | W3C validator |