Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erALTVeq1 Structured version   Visualization version   GIF version

Theorem erALTVeq1 36687
Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.)
Assertion
Ref Expression
erALTVeq1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))

Proof of Theorem erALTVeq1
StepHypRef Expression
1 eqvreleq 36621 . . 3 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
2 dmqseqeq1 36662 . . 3 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
31, 2anbi12d 634 . 2 (𝑅 = 𝑆 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)))
4 dferALTV2 36686 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
5 dferALTV2 36686 . 2 (𝑆 ErALTV 𝐴 ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))
63, 4, 53bitr4g 317 1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  dom cdm 5579   / cqs 8432   EqvRel weqvrel 36256   ErALTV werALTV 36265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-ec 8435  df-qs 8439  df-refrel 36536  df-symrel 36564  df-trrel 36594  df-eqvrel 36604  df-dmqs 36658  df-erALTV 36682
This theorem is referenced by:  erALTVeq1i  36688  erALTVeq1d  36689
  Copyright terms: Public domain W3C validator