Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erALTVeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
Ref | Expression |
---|---|
erALTVeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreleq 36489 | . . 3 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | |
2 | dmqseqeq1 36530 | . . 3 ⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | |
3 | 1, 2 | anbi12d 634 | . 2 ⊢ (𝑅 = 𝑆 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) |
4 | dferALTV2 36554 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
5 | dferALTV2 36554 | . 2 ⊢ (𝑆 ErALTV 𝐴 ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 317 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 dom cdm 5569 / cqs 8414 EqvRel weqvrel 36124 ErALTV werALTV 36133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pr 5339 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-ec 8417 df-qs 8421 df-refrel 36404 df-symrel 36432 df-trrel 36462 df-eqvrel 36472 df-dmqs 36526 df-erALTV 36550 |
This theorem is referenced by: erALTVeq1i 36556 erALTVeq1d 36557 |
Copyright terms: Public domain | W3C validator |