Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erALTVeq1 Structured version   Visualization version   GIF version

Theorem erALTVeq1 38777
Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.)
Assertion
Ref Expression
erALTVeq1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))

Proof of Theorem erALTVeq1
StepHypRef Expression
1 eqvreleq 38708 . . 3 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
2 dmqseqeq1 38750 . . 3 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
31, 2anbi12d 632 . 2 (𝑅 = 𝑆 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)))
4 dferALTV2 38776 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
5 dferALTV2 38776 . 2 (𝑆 ErALTV 𝐴 ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  dom cdm 5621   / cqs 8630   EqvRel weqvrel 38249   ErALTV werALTV 38258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8633  df-qs 8637  df-refrel 38614  df-symrel 38646  df-trrel 38680  df-eqvrel 38691  df-dmqs 38745  df-erALTV 38772
This theorem is referenced by:  erALTVeq1i  38778  erALTVeq1d  38779
  Copyright terms: Public domain W3C validator