Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erALTVeq1 Structured version   Visualization version   GIF version

Theorem erALTVeq1 38686
Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.)
Assertion
Ref Expression
erALTVeq1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))

Proof of Theorem erALTVeq1
StepHypRef Expression
1 eqvreleq 38618 . . 3 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
2 dmqseqeq1 38659 . . 3 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
31, 2anbi12d 632 . 2 (𝑅 = 𝑆 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)))
4 dferALTV2 38685 . 2 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
5 dferALTV2 38685 . 2 (𝑆 ErALTV 𝐴 ↔ ( EqvRel 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  dom cdm 5614   / cqs 8616   EqvRel weqvrel 38211   ErALTV werALTV 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619  df-qs 8623  df-refrel 38528  df-symrel 38560  df-trrel 38590  df-eqvrel 38601  df-dmqs 38655  df-erALTV 38681
This theorem is referenced by:  erALTVeq1i  38687  erALTVeq1d  38688
  Copyright terms: Public domain W3C validator