| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdmqseqeq1 | Structured version Visualization version GIF version | ||
| Description: Lemma for the equality theorem for partition parteq1 38797. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| Ref | Expression |
|---|---|
| disjdmqseqeq1 | ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq 38757 | . 2 ⊢ (𝑅 = 𝑆 → ( Disj 𝑅 ↔ Disj 𝑆)) | |
| 2 | dmqseqeq1 38666 | . 2 ⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | 1 ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5659 / cqs 8723 Disj wdisjALTV 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 df-coss 38434 df-cnvrefrel 38550 df-funALTV 38705 df-disjALTV 38728 |
| This theorem is referenced by: parteq1 38797 |
| Copyright terms: Public domain | W3C validator |