MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresexg Structured version   Visualization version   GIF version

Theorem dmresexg 5963
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmresexg (𝐵𝑉 → dom (𝐴𝐵) ∈ V)

Proof of Theorem dmresexg
StepHypRef Expression
1 dmres 5961 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inex1g 5257 . 2 (𝐵𝑉 → (𝐵 ∩ dom 𝐴) ∈ V)
31, 2eqeltrid 2835 1 (𝐵𝑉 → dom (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cin 3901  dom cdm 5616  cres 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-dm 5626  df-res 5628
This theorem is referenced by:  resfunexg  7149  resfunexgALT  7880
  Copyright terms: Public domain W3C validator