MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresexg Structured version   Visualization version   GIF version

Theorem dmresexg 5993
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmresexg (𝐵𝑉 → dom (𝐴𝐵) ∈ V)

Proof of Theorem dmresexg
StepHypRef Expression
1 dmres 5991 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inex1g 5282 . 2 (𝐵𝑉 → (𝐵 ∩ dom 𝐴) ∈ V)
31, 2eqeltrid 2833 1 (𝐵𝑉 → dom (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3455  cin 3921  dom cdm 5646  cres 5648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-dm 5656  df-res 5658
This theorem is referenced by:  resfunexg  7196  resfunexgALT  7935
  Copyright terms: Public domain W3C validator