MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresexg Structured version   Visualization version   GIF version

Theorem dmresexg 6012
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
dmresexg (𝐵𝑉 → dom (𝐴𝐵) ∈ V)

Proof of Theorem dmresexg
StepHypRef Expression
1 dmres 6010 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inex1g 5299 . 2 (𝐵𝑉 → (𝐵 ∩ dom 𝐴) ∈ V)
31, 2eqeltrid 2837 1 (𝐵𝑉 → dom (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3463  cin 3930  dom cdm 5665  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-dm 5675  df-res 5677
This theorem is referenced by:  resfunexg  7216  resfunexgALT  7953
  Copyright terms: Public domain W3C validator