![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresexg | Structured version Visualization version GIF version |
Description: The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
dmresexg | ⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5714 | . 2 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | inex1g 5074 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ dom 𝐴) ∈ V) | |
3 | 1, 2 | syl5eqel 2864 | 1 ⊢ (𝐵 ∈ 𝑉 → dom (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2048 Vcvv 3409 ∩ cin 3824 dom cdm 5400 ↾ cres 5402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5406 df-dm 5410 df-res 5412 |
This theorem is referenced by: resfunexg 6798 resfunexgALT 7455 |
Copyright terms: Public domain | W3C validator |