MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexg Structured version   Visualization version   GIF version

Theorem resfunexg 7155
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 6528 . . . . . . 7 (Fun 𝐴 → Fun (𝐴𝐵))
21adantr 480 . . . . . 6 ((Fun 𝐴𝐵𝐶) → Fun (𝐴𝐵))
32funfnd 6517 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) Fn dom (𝐴𝐵))
4 dffn5 6885 . . . . 5 ((𝐴𝐵) Fn dom (𝐴𝐵) ↔ (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
53, 4sylib 218 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
6 fvex 6839 . . . . 5 ((𝐴𝐵)‘𝑥) ∈ V
76fnasrn 7083 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
85, 7eqtrdi 2780 . . 3 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
9 opex 5411 . . . . . 6 𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V
10 eqid 2729 . . . . . 6 (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
119, 10dmmpti 6630 . . . . 5 dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵)
1211imaeq2i 6013 . . . 4 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵))
13 imadmrn 6025 . . . 4 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
1412, 13eqtr3i 2754 . . 3 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
158, 14eqtr4di 2782 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
16 funmpt 6524 . . 3 Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
17 dmresexg 5969 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
1817adantl 481 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
19 funimaexg 6573 . . 3 ((Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) ∧ dom (𝐴𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2016, 18, 19sylancr 587 . 2 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2115, 20eqeltrd 2828 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cmpt 5176  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  resiexd  7156  fnex  7157  ofexg  7622  cofunexg  7891  frrlem13  8238  naddcllem  8601  dfac8alem  9942  dfac12lem1  10057  cfsmolem  10183  alephsing  10189  itunifval  10329  zorn2lem1  10409  ttukeylem3  10424  imadomg  10447  wunex2  10651  inar1  10688  axdc4uzlem  13908  hashf1rn  14277  bpolylem  15973  1stf1  18116  1stf2  18117  2ndf1  18119  2ndf2  18120  1stfcl  18121  2ndfcl  18122  gsumzadd  19819  dfrngc2  20531  dfringc2  20560  rngcresringcat  20572  madeval  27780  addsval  27892  negsval  27954  mulsval  28035  gblacfnacd  35074  onvf1odlem3  35077  satf  35325  tendo02  40766  dnnumch1  43017  aomclem6  43032  grimidvtxedg  47870  uhgrimisgrgric  47916  fdivval  48525  fucoelvv  49306
  Copyright terms: Public domain W3C validator