| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfunexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6608 | . . . . . . 7 ⊢ (Fun 𝐴 → Fun (𝐴 ↾ 𝐵)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
| 3 | 2 | funfnd 6597 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
| 4 | dffn5 6967 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
| 6 | fvex 6919 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V | |
| 7 | 6 | fnasrn 7165 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 8 | 5, 7 | eqtrdi 2793 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
| 9 | opex 5469 | . . . . . 6 ⊢ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V | |
| 10 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 11 | 9, 10 | dmmpti 6712 | . . . . 5 ⊢ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | imaeq2i 6076 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) |
| 13 | imadmrn 6088 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 14 | 12, 13 | eqtr3i 2767 | . . 3 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 15 | 8, 14 | eqtr4di 2795 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) |
| 16 | funmpt 6604 | . . 3 ⊢ Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 17 | dmresexg 6032 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
| 19 | funimaexg 6653 | . . 3 ⊢ ((Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) | |
| 20 | 16, 18, 19 | sylancr 587 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
| 21 | 15, 20 | eqeltrd 2841 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 〈cop 4632 ↦ cmpt 5225 dom cdm 5685 ran crn 5686 ↾ cres 5687 “ cima 5688 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 |
| This theorem is referenced by: resiexd 7236 fnex 7237 ofexg 7702 cofunexg 7973 frrlem13 8323 naddcllem 8714 dfac8alem 10069 dfac12lem1 10184 cfsmolem 10310 alephsing 10316 itunifval 10456 zorn2lem1 10536 ttukeylem3 10551 imadomg 10574 wunex2 10778 inar1 10815 axdc4uzlem 14024 hashf1rn 14391 bpolylem 16084 1stf1 18237 1stf2 18238 2ndf1 18240 2ndf2 18241 1stfcl 18242 2ndfcl 18243 gsumzadd 19940 dfrngc2 20628 dfringc2 20657 rngcresringcat 20669 madeval 27891 addsval 27995 negsval 28057 mulsval 28135 gblacfnacd 35113 satf 35358 tendo02 40789 dnnumch1 43056 aomclem6 43071 grimidvtxedg 47876 uhgrimisgrgric 47899 fdivval 48460 fucoelvv 49015 |
| Copyright terms: Public domain | W3C validator |