MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexg Structured version   Visualization version   GIF version

Theorem resfunexg 7252
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 6620 . . . . . . 7 (Fun 𝐴 → Fun (𝐴𝐵))
21adantr 480 . . . . . 6 ((Fun 𝐴𝐵𝐶) → Fun (𝐴𝐵))
32funfnd 6609 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) Fn dom (𝐴𝐵))
4 dffn5 6980 . . . . 5 ((𝐴𝐵) Fn dom (𝐴𝐵) ↔ (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
53, 4sylib 218 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
6 fvex 6933 . . . . 5 ((𝐴𝐵)‘𝑥) ∈ V
76fnasrn 7179 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
85, 7eqtrdi 2796 . . 3 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
9 opex 5484 . . . . . 6 𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V
10 eqid 2740 . . . . . 6 (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
119, 10dmmpti 6724 . . . . 5 dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵)
1211imaeq2i 6087 . . . 4 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵))
13 imadmrn 6099 . . . 4 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
1412, 13eqtr3i 2770 . . 3 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
158, 14eqtr4di 2798 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
16 funmpt 6616 . . 3 Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
17 dmresexg 6043 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
1817adantl 481 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
19 funimaexg 6664 . . 3 ((Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) ∧ dom (𝐴𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2016, 18, 19sylancr 586 . 2 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2115, 20eqeltrd 2844 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  resiexd  7253  fnex  7254  ofexg  7719  cofunexg  7989  frrlem13  8339  naddcllem  8732  dfac8alem  10098  dfac12lem1  10213  cfsmolem  10339  alephsing  10345  itunifval  10485  zorn2lem1  10565  ttukeylem3  10580  imadomg  10603  wunex2  10807  inar1  10844  axdc4uzlem  14034  hashf1rn  14401  bpolylem  16096  1stf1  18261  1stf2  18262  2ndf1  18264  2ndf2  18265  1stfcl  18266  2ndfcl  18267  gsumzadd  19964  dfrngc2  20650  dfringc2  20679  rngcresringcat  20691  madeval  27909  addsval  28013  negsval  28075  mulsval  28153  gblacfnacd  35075  satf  35321  tendo02  40744  dnnumch1  43001  aomclem6  43016  grimidvtxedg  47760  uhgrimisgrgric  47783  fdivval  48273
  Copyright terms: Public domain W3C validator