![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfunexg | Structured version Visualization version GIF version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
resfunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6590 | . . . . . . 7 ⊢ (Fun 𝐴 → Fun (𝐴 ↾ 𝐵)) | |
2 | 1 | adantr 479 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
3 | 2 | funfnd 6579 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
4 | dffn5 6952 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
6 | fvex 6905 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V | |
7 | 6 | fnasrn 7150 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) |
8 | 5, 7 | eqtrdi 2781 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) |
9 | opex 5460 | . . . . . 6 ⊢ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩ ∈ V | |
10 | eqid 2725 | . . . . . 6 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
11 | 9, 10 | dmmpti 6694 | . . . . 5 ⊢ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) = dom (𝐴 ↾ 𝐵) |
12 | 11 | imaeq2i 6056 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) |
13 | imadmrn 6068 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
14 | 12, 13 | eqtr3i 2755 | . . 3 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) |
15 | 8, 14 | eqtr4di 2783 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵))) |
16 | funmpt 6586 | . . 3 ⊢ Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
17 | dmresexg 6013 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
18 | 17 | adantl 480 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
19 | funimaexg 6634 | . . 3 ⊢ ((Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) ∈ V) | |
20 | 16, 18, 19 | sylancr 585 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
21 | 15, 20 | eqeltrd 2825 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⟨cop 4630 ↦ cmpt 5226 dom cdm 5672 ran crn 5673 ↾ cres 5674 “ cima 5675 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: resiexd 7224 fnex 7225 ofexg 7687 cofunexg 7950 frrlem13 8302 naddcllem 8695 dfac8alem 10052 dfac12lem1 10166 cfsmolem 10293 alephsing 10299 itunifval 10439 zorn2lem1 10519 ttukeylem3 10534 imadomg 10557 wunex2 10761 inar1 10798 axdc4uzlem 13980 hashf1rn 14343 bpolylem 16024 1stf1 18182 1stf2 18183 2ndf1 18185 2ndf2 18186 1stfcl 18187 2ndfcl 18188 gsumzadd 19881 dfrngc2 20565 dfringc2 20594 rngcresringcat 20606 madeval 27797 addsval 27897 negsval 27956 mulsval 28031 satf 35020 tendo02 40316 dnnumch1 42533 aomclem6 42548 grimidvtxedg 47286 fdivval 47724 |
Copyright terms: Public domain | W3C validator |