| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfunexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6523 | . . . . . . 7 ⊢ (Fun 𝐴 → Fun (𝐴 ↾ 𝐵)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
| 3 | 2 | funfnd 6512 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
| 4 | dffn5 6880 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
| 6 | fvex 6835 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V | |
| 7 | 6 | fnasrn 7078 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 8 | 5, 7 | eqtrdi 2782 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
| 9 | opex 5404 | . . . . . 6 ⊢ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 11 | 9, 10 | dmmpti 6625 | . . . . 5 ⊢ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | imaeq2i 6007 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) |
| 13 | imadmrn 6019 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 14 | 12, 13 | eqtr3i 2756 | . . 3 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 15 | 8, 14 | eqtr4di 2784 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) |
| 16 | funmpt 6519 | . . 3 ⊢ Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 17 | dmresexg 5963 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
| 19 | funimaexg 6568 | . . 3 ⊢ ((Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) | |
| 20 | 16, 18, 19 | sylancr 587 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
| 21 | 15, 20 | eqeltrd 2831 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: resiexd 7150 fnex 7151 ofexg 7615 cofunexg 7881 frrlem13 8228 naddcllem 8591 dfac8alem 9917 dfac12lem1 10032 cfsmolem 10158 alephsing 10164 itunifval 10304 zorn2lem1 10384 ttukeylem3 10399 imadomg 10422 wunex2 10626 inar1 10663 axdc4uzlem 13887 hashf1rn 14256 bpolylem 15952 1stf1 18095 1stf2 18096 2ndf1 18098 2ndf2 18099 1stfcl 18100 2ndfcl 18101 gsumzadd 19832 dfrngc2 20541 dfringc2 20570 rngcresringcat 20582 madeval 27791 addsval 27903 negsval 27965 mulsval 28046 gblacfnacd 35134 onvf1odlem3 35137 satf 35385 tendo02 40825 dnnumch1 43076 aomclem6 43091 grimidvtxedg 47915 uhgrimisgrgric 47961 fdivval 48570 fucoelvv 49351 |
| Copyright terms: Public domain | W3C validator |