![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfunexg | Structured version Visualization version GIF version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
resfunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6584 | . . . . . . 7 ⊢ (Fun 𝐴 → Fun (𝐴 ↾ 𝐵)) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
3 | 2 | funfnd 6573 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
4 | dffn5 6944 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
6 | fvex 6898 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V | |
7 | 6 | fnasrn 7139 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) |
8 | 5, 7 | eqtrdi 2782 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) |
9 | opex 5457 | . . . . . 6 ⊢ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩ ∈ V | |
10 | eqid 2726 | . . . . . 6 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
11 | 9, 10 | dmmpti 6688 | . . . . 5 ⊢ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) = dom (𝐴 ↾ 𝐵) |
12 | 11 | imaeq2i 6051 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) |
13 | imadmrn 6063 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
14 | 12, 13 | eqtr3i 2756 | . . 3 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) |
15 | 8, 14 | eqtr4di 2784 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵))) |
16 | funmpt 6580 | . . 3 ⊢ Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) | |
17 | dmresexg 5999 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
18 | 17 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
19 | funimaexg 6628 | . . 3 ⊢ ((Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) ∈ V) | |
20 | 16, 18, 19 | sylancr 586 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ⟨𝑥, ((𝐴 ↾ 𝐵)‘𝑥)⟩) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
21 | 15, 20 | eqeltrd 2827 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 ↦ cmpt 5224 dom cdm 5669 ran crn 5670 ↾ cres 5671 “ cima 5672 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 |
This theorem is referenced by: resiexd 7213 fnex 7214 ofexg 7672 cofunexg 7934 frrlem13 8284 naddcllem 8677 dfac8alem 10026 dfac12lem1 10140 cfsmolem 10267 alephsing 10273 itunifval 10413 zorn2lem1 10493 ttukeylem3 10508 imadomg 10531 wunex2 10735 inar1 10772 axdc4uzlem 13954 hashf1rn 14317 bpolylem 15998 1stf1 18156 1stf2 18157 2ndf1 18159 2ndf2 18160 1stfcl 18161 2ndfcl 18162 gsumzadd 19842 dfrngc2 20524 dfringc2 20553 rngcresringcat 20565 madeval 27734 addsval 27834 negsval 27893 mulsval 27964 satf 34872 tendo02 40171 dnnumch1 42364 aomclem6 42379 fdivval 47500 |
Copyright terms: Public domain | W3C validator |