| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfunexg | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| resfunexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6578 | . . . . . . 7 ⊢ (Fun 𝐴 → Fun (𝐴 ↾ 𝐵)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → Fun (𝐴 ↾ 𝐵)) |
| 3 | 2 | funfnd 6567 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵)) |
| 4 | dffn5 6937 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) Fn dom (𝐴 ↾ 𝐵) ↔ (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥))) |
| 6 | fvex 6889 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵)‘𝑥) ∈ V | |
| 7 | 6 | fnasrn 7135 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ ((𝐴 ↾ 𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 8 | 5, 7 | eqtrdi 2786 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) |
| 9 | opex 5439 | . . . . . 6 ⊢ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉 ∈ V | |
| 10 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 11 | 9, 10 | dmmpti 6682 | . . . . 5 ⊢ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) = dom (𝐴 ↾ 𝐵) |
| 12 | 11 | imaeq2i 6045 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) |
| 13 | imadmrn 6057 | . . . 4 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 14 | 12, 13 | eqtr3i 2760 | . . 3 ⊢ ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) = ran (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) |
| 15 | 8, 14 | eqtr4di 2788 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) = ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵))) |
| 16 | funmpt 6574 | . . 3 ⊢ Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) | |
| 17 | dmresexg 6001 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
| 19 | funimaexg 6623 | . . 3 ⊢ ((Fun (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) ∧ dom (𝐴 ↾ 𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) | |
| 20 | 16, 18, 19 | sylancr 587 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ dom (𝐴 ↾ 𝐵) ↦ 〈𝑥, ((𝐴 ↾ 𝐵)‘𝑥)〉) “ dom (𝐴 ↾ 𝐵)) ∈ V) |
| 21 | 15, 20 | eqeltrd 2834 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 ↾ cres 5656 “ cima 5657 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: resiexd 7208 fnex 7209 ofexg 7676 cofunexg 7947 frrlem13 8297 naddcllem 8688 dfac8alem 10043 dfac12lem1 10158 cfsmolem 10284 alephsing 10290 itunifval 10430 zorn2lem1 10510 ttukeylem3 10525 imadomg 10548 wunex2 10752 inar1 10789 axdc4uzlem 14001 hashf1rn 14370 bpolylem 16064 1stf1 18204 1stf2 18205 2ndf1 18207 2ndf2 18208 1stfcl 18209 2ndfcl 18210 gsumzadd 19903 dfrngc2 20588 dfringc2 20617 rngcresringcat 20629 madeval 27812 addsval 27921 negsval 27983 mulsval 28064 gblacfnacd 35130 satf 35375 tendo02 40806 dnnumch1 43068 aomclem6 43083 grimidvtxedg 47898 uhgrimisgrgric 47944 fdivval 48519 fucoelvv 49231 |
| Copyright terms: Public domain | W3C validator |