![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version |
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
Ref | Expression |
---|---|
ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3957 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
2 | dmres 5993 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
3 | 2 | eqeq1i 2729 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∩ cin 3939 ⊆ wss 3940 dom cdm 5666 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-dm 5676 df-res 5678 |
This theorem is referenced by: dmresi 6041 fnssresb 6662 fores 6805 foimacnv 6840 dffv2 6976 sbthlem4 9081 hashres 14394 hashimarn 14396 dvres3 25752 c1liplem1 25839 lhop1lem 25856 lhop 25859 usgrres 28989 vtxdginducedm1lem2 29221 wlkres 29351 trlreslem 29380 hhssabloi 30939 hhssnv 30941 hhshsslem1 30944 fresf1o 32279 fsupprnfi 32338 gsumhashmul 32635 cycpmconjvlem 32727 exidreslem 37201 divrngcl 37281 isdrngo2 37282 n0elqs2 37652 dvbdfbdioolem1 45095 fourierdlem48 45321 fourierdlem49 45322 fourierdlem71 45344 fourierdlem73 45346 fourierdlem94 45367 fourierdlem111 45384 fourierdlem112 45385 fourierdlem113 45386 fouriersw 45398 fouriercn 45399 dmvon 45773 |
Copyright terms: Public domain | W3C validator |