![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version |
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
Ref | Expression |
---|---|
ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3980 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
2 | dmres 6031 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
3 | 2 | eqeq1i 2739 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∩ cin 3961 ⊆ wss 3962 dom cdm 5688 ↾ cres 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-dm 5698 df-res 5700 |
This theorem is referenced by: dmresi 6071 fnssresb 6690 fores 6830 foimacnv 6865 dffv2 7003 fssrescdmd 7145 sbthlem4 9124 hashres 14473 hashimarn 14475 dvres3 25962 c1liplem1 26049 lhop1lem 26066 lhop 26069 usgrres 29339 vtxdginducedm1lem2 29572 wlkres 29702 trlreslem 29731 hhssabloi 31290 hhssnv 31292 hhshsslem1 31295 fresf1o 32647 fsupprnfi 32706 gsumhashmul 33046 cycpmconjvlem 33143 exidreslem 37863 divrngcl 37943 isdrngo2 37944 n0elqs2 38308 dvbdfbdioolem1 45883 fourierdlem48 46109 fourierdlem49 46110 fourierdlem71 46132 fourierdlem73 46134 fourierdlem94 46155 fourierdlem111 46172 fourierdlem112 46173 fourierdlem113 46174 fouriersw 46186 fouriercn 46187 dmvon 46561 isubgrgrim 47834 |
Copyright terms: Public domain | W3C validator |