| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3935 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5986 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2735 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-res 5653 |
| This theorem is referenced by: dmresi 6026 fnssresb 6643 fores 6785 foimacnv 6820 dffv2 6959 fssrescdmd 7101 sbthlem4 9060 hashres 14410 hashimarn 14412 dvres3 25821 c1liplem1 25908 lhop1lem 25925 lhop 25928 usgrres 29242 vtxdginducedm1lem2 29475 wlkres 29605 trlreslem 29634 cyclnumvtx 29737 hhssabloi 31198 hhssnv 31200 hhshsslem1 31203 fresf1o 32562 fsupprnfi 32622 gsumhashmul 33008 cycpmconjvlem 33105 exidreslem 37878 divrngcl 37958 isdrngo2 37959 n0elqs2 38322 dvbdfbdioolem1 45933 fourierdlem48 46159 fourierdlem49 46160 fourierdlem71 46182 fourierdlem73 46184 fourierdlem94 46205 fourierdlem111 46222 fourierdlem112 46223 fourierdlem113 46224 fouriersw 46236 fouriercn 46237 dmvon 46611 isubgrgrim 47933 |
| Copyright terms: Public domain | W3C validator |