| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3932 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5983 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-res 5650 |
| This theorem is referenced by: dmresi 6023 fnssresb 6640 fores 6782 foimacnv 6817 dffv2 6956 fssrescdmd 7098 sbthlem4 9054 hashres 14403 hashimarn 14405 dvres3 25814 c1liplem1 25901 lhop1lem 25918 lhop 25921 usgrres 29235 vtxdginducedm1lem2 29468 wlkres 29598 trlreslem 29627 cyclnumvtx 29730 hhssabloi 31191 hhssnv 31193 hhshsslem1 31196 fresf1o 32555 fsupprnfi 32615 gsumhashmul 33001 cycpmconjvlem 33098 exidreslem 37871 divrngcl 37951 isdrngo2 37952 n0elqs2 38315 dvbdfbdioolem1 45926 fourierdlem48 46152 fourierdlem49 46153 fourierdlem71 46175 fourierdlem73 46177 fourierdlem94 46198 fourierdlem111 46215 fourierdlem112 46216 fourierdlem113 46217 fouriersw 46229 fouriercn 46230 dmvon 46604 isubgrgrim 47929 |
| Copyright terms: Public domain | W3C validator |