MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdmres Structured version   Visualization version   GIF version

Theorem ssdmres 5957
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)

Proof of Theorem ssdmres
StepHypRef Expression
1 dfss2 3915 . 2 (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
2 dmres 5956 . . 3 dom (𝐵𝐴) = (𝐴 ∩ dom 𝐵)
32eqeq1i 2736 . 2 (dom (𝐵𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
41, 3bitr4i 278 1 (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cin 3896  wss 3897  dom cdm 5611  cres 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-dm 5621  df-res 5623
This theorem is referenced by:  dmresi  5996  fnssresb  6598  fores  6740  foimacnv  6775  dffv2  6912  fssrescdmd  7054  sbthlem4  8998  hashres  14340  hashimarn  14342  dvres3  25836  c1liplem1  25923  lhop1lem  25940  lhop  25943  usgrres  29281  vtxdginducedm1lem2  29514  wlkres  29642  trlreslem  29671  cyclnumvtx  29773  hhssabloi  31234  hhssnv  31236  hhshsslem1  31239  fresf1o  32605  fsupprnfi  32665  gsumhashmul  33033  cycpmconjvlem  33102  exidreslem  37917  divrngcl  37997  isdrngo2  37998  n0elqs2  38361  dvbdfbdioolem1  45966  fourierdlem48  46192  fourierdlem49  46193  fourierdlem71  46215  fourierdlem73  46217  fourierdlem94  46238  fourierdlem111  46255  fourierdlem112  46256  fourierdlem113  46257  fouriersw  46269  fouriercn  46270  dmvon  46644  isubgrgrim  47960
  Copyright terms: Public domain W3C validator