| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3915 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5956 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2736 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∩ cin 3896 ⊆ wss 3897 dom cdm 5611 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-dm 5621 df-res 5623 |
| This theorem is referenced by: dmresi 5996 fnssresb 6598 fores 6740 foimacnv 6775 dffv2 6912 fssrescdmd 7054 sbthlem4 8998 hashres 14340 hashimarn 14342 dvres3 25836 c1liplem1 25923 lhop1lem 25940 lhop 25943 usgrres 29281 vtxdginducedm1lem2 29514 wlkres 29642 trlreslem 29671 cyclnumvtx 29773 hhssabloi 31234 hhssnv 31236 hhshsslem1 31239 fresf1o 32605 fsupprnfi 32665 gsumhashmul 33033 cycpmconjvlem 33102 exidreslem 37917 divrngcl 37997 isdrngo2 37998 n0elqs2 38361 dvbdfbdioolem1 45966 fourierdlem48 46192 fourierdlem49 46193 fourierdlem71 46215 fourierdlem73 46217 fourierdlem94 46238 fourierdlem111 46255 fourierdlem112 46256 fourierdlem113 46257 fouriersw 46269 fouriercn 46270 dmvon 46644 isubgrgrim 47960 |
| Copyright terms: Public domain | W3C validator |