Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version |
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
Ref | Expression |
---|---|
ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3900 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
2 | dmres 5902 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
3 | 2 | eqeq1i 2743 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 dom cdm 5580 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-res 5592 |
This theorem is referenced by: dmresi 5950 fnssresb 6538 fores 6682 foimacnv 6717 dffv2 6845 sbthlem4 8826 hashres 14081 hashimarn 14083 dvres3 24982 c1liplem1 25065 lhop1lem 25082 lhop 25085 usgrres 27578 vtxdginducedm1lem2 27810 wlkres 27940 trlreslem 27969 hhssabloi 29525 hhssnv 29527 hhshsslem1 29530 fresf1o 30867 fsupprnfi 30928 gsumhashmul 31218 cycpmconjvlem 31310 exidreslem 35962 divrngcl 36042 isdrngo2 36043 n0elqs2 36389 dvbdfbdioolem1 43359 fourierdlem48 43585 fourierdlem49 43586 fourierdlem71 43608 fourierdlem73 43610 fourierdlem94 43631 fourierdlem111 43648 fourierdlem112 43649 fourierdlem113 43650 fouriersw 43662 fouriercn 43663 dmvon 44034 |
Copyright terms: Public domain | W3C validator |