MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdmres Structured version   Visualization version   GIF version

Theorem ssdmres 6000
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)

Proof of Theorem ssdmres
StepHypRef Expression
1 dfss2 3944 . 2 (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
2 dmres 5999 . . 3 dom (𝐵𝐴) = (𝐴 ∩ dom 𝐵)
32eqeq1i 2740 . 2 (dom (𝐵𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
41, 3bitr4i 278 1 (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3925  wss 3926  dom cdm 5654  cres 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-res 5666
This theorem is referenced by:  dmresi  6039  fnssresb  6659  fores  6799  foimacnv  6834  dffv2  6973  fssrescdmd  7115  sbthlem4  9098  hashres  14454  hashimarn  14456  dvres3  25864  c1liplem1  25951  lhop1lem  25968  lhop  25971  usgrres  29233  vtxdginducedm1lem2  29466  wlkres  29596  trlreslem  29625  cyclnumvtx  29728  hhssabloi  31189  hhssnv  31191  hhshsslem1  31194  fresf1o  32555  fsupprnfi  32615  gsumhashmul  33001  cycpmconjvlem  33098  exidreslem  37847  divrngcl  37927  isdrngo2  37928  n0elqs2  38291  dvbdfbdioolem1  45905  fourierdlem48  46131  fourierdlem49  46132  fourierdlem71  46154  fourierdlem73  46156  fourierdlem94  46177  fourierdlem111  46194  fourierdlem112  46195  fourierdlem113  46196  fouriersw  46208  fouriercn  46209  dmvon  46583  isubgrgrim  47890
  Copyright terms: Public domain W3C validator