| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3921 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5963 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3902 ⊆ wss 3903 dom cdm 5619 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-res 5631 |
| This theorem is referenced by: dmresi 6003 fnssresb 6604 fores 6746 foimacnv 6781 dffv2 6918 fssrescdmd 7060 sbthlem4 9007 hashres 14345 hashimarn 14347 dvres3 25812 c1liplem1 25899 lhop1lem 25916 lhop 25919 usgrres 29253 vtxdginducedm1lem2 29486 wlkres 29614 trlreslem 29643 cyclnumvtx 29745 hhssabloi 31206 hhssnv 31208 hhshsslem1 31211 fresf1o 32574 fsupprnfi 32634 gsumhashmul 33014 cycpmconjvlem 33083 exidreslem 37857 divrngcl 37937 isdrngo2 37938 n0elqs2 38301 dvbdfbdioolem1 45909 fourierdlem48 46135 fourierdlem49 46136 fourierdlem71 46158 fourierdlem73 46160 fourierdlem94 46181 fourierdlem111 46198 fourierdlem112 46199 fourierdlem113 46200 fouriersw 46212 fouriercn 46213 dmvon 46587 isubgrgrim 47913 |
| Copyright terms: Public domain | W3C validator |