| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3944 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5999 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2740 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3925 ⊆ wss 3926 dom cdm 5654 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-res 5666 |
| This theorem is referenced by: dmresi 6039 fnssresb 6659 fores 6799 foimacnv 6834 dffv2 6973 fssrescdmd 7115 sbthlem4 9098 hashres 14454 hashimarn 14456 dvres3 25864 c1liplem1 25951 lhop1lem 25968 lhop 25971 usgrres 29233 vtxdginducedm1lem2 29466 wlkres 29596 trlreslem 29625 cyclnumvtx 29728 hhssabloi 31189 hhssnv 31191 hhshsslem1 31194 fresf1o 32555 fsupprnfi 32615 gsumhashmul 33001 cycpmconjvlem 33098 exidreslem 37847 divrngcl 37927 isdrngo2 37928 n0elqs2 38291 dvbdfbdioolem1 45905 fourierdlem48 46131 fourierdlem49 46132 fourierdlem71 46154 fourierdlem73 46156 fourierdlem94 46177 fourierdlem111 46194 fourierdlem112 46195 fourierdlem113 46196 fouriersw 46208 fouriercn 46209 dmvon 46583 isubgrgrim 47890 |
| Copyright terms: Public domain | W3C validator |