![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version |
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
Ref | Expression |
---|---|
ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3994 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
2 | dmres 6041 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
3 | 2 | eqeq1i 2745 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-res 5712 |
This theorem is referenced by: dmresi 6081 fnssresb 6702 fores 6844 foimacnv 6879 dffv2 7017 fssrescdmd 7160 sbthlem4 9152 hashres 14487 hashimarn 14489 dvres3 25968 c1liplem1 26055 lhop1lem 26072 lhop 26075 usgrres 29343 vtxdginducedm1lem2 29576 wlkres 29706 trlreslem 29735 hhssabloi 31294 hhssnv 31296 hhshsslem1 31299 fresf1o 32650 fsupprnfi 32704 gsumhashmul 33040 cycpmconjvlem 33134 exidreslem 37837 divrngcl 37917 isdrngo2 37918 n0elqs2 38283 dvbdfbdioolem1 45849 fourierdlem48 46075 fourierdlem49 46076 fourierdlem71 46098 fourierdlem73 46100 fourierdlem94 46121 fourierdlem111 46138 fourierdlem112 46139 fourierdlem113 46140 fouriersw 46152 fouriercn 46153 dmvon 46527 isubgrgrim 47781 |
Copyright terms: Public domain | W3C validator |