| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdmres | Structured version Visualization version GIF version | ||
| Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.) |
| Ref | Expression |
|---|---|
| ssdmres | ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3929 | . 2 ⊢ (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) | |
| 2 | dmres 5972 | . . 3 ⊢ dom (𝐵 ↾ 𝐴) = (𝐴 ∩ dom 𝐵) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ (dom (𝐵 ↾ 𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵 ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3910 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-res 5643 |
| This theorem is referenced by: dmresi 6012 fnssresb 6622 fores 6764 foimacnv 6799 dffv2 6938 fssrescdmd 7080 sbthlem4 9031 hashres 14379 hashimarn 14381 dvres3 25790 c1liplem1 25877 lhop1lem 25894 lhop 25897 usgrres 29211 vtxdginducedm1lem2 29444 wlkres 29572 trlreslem 29601 cyclnumvtx 29703 hhssabloi 31164 hhssnv 31166 hhshsslem1 31169 fresf1o 32528 fsupprnfi 32588 gsumhashmul 32974 cycpmconjvlem 33071 exidreslem 37844 divrngcl 37924 isdrngo2 37925 n0elqs2 38288 dvbdfbdioolem1 45899 fourierdlem48 46125 fourierdlem49 46126 fourierdlem71 46148 fourierdlem73 46150 fourierdlem94 46171 fourierdlem111 46188 fourierdlem112 46189 fourierdlem113 46190 fouriersw 46202 fouriercn 46203 dmvon 46577 isubgrgrim 47902 |
| Copyright terms: Public domain | W3C validator |