MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Structured version   Visualization version   GIF version

Theorem resfunexgALT 7933
Description: Alternate proof of resfunexg 7216, shorter but requiring ax-pow 5363 and ax-un 7724. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 6005 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
21adantl 482 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
3 df-ima 5689 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
4 funimaexg 6634 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
53, 4eqeltrrid 2838 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
62, 5jca 512 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V))
7 xpexg 7736 . 2 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
8 relres 6010 . . . 4 Rel (𝐴𝐵)
9 relssdmrn 6267 . . . 4 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
108, 9ax-mp 5 . . 3 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
11 ssexg 5323 . . 3 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
1210, 11mpan 688 . 2 ((dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V → (𝐴𝐵) ∈ V)
136, 7, 123syl 18 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  wss 3948   × cxp 5674  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Rel wrel 5681  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator