Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Structured version   Visualization version   GIF version

Theorem resfunexgALT 7652
 Description: Alternate proof of resfunexg 6981, shorter but requiring ax-pow 5269 and ax-un 7464. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 5880 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
21adantl 484 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
3 df-ima 5571 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
4 funimaexg 6443 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
53, 4eqeltrrid 2921 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
62, 5jca 514 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V))
7 xpexg 7476 . 2 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
8 relres 5885 . . . 4 Rel (𝐴𝐵)
9 relssdmrn 6124 . . . 4 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
108, 9ax-mp 5 . . 3 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
11 ssexg 5230 . . 3 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
1210, 11mpan 688 . 2 ((dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V → (𝐴𝐵) ∈ V)
136, 7, 123syl 18 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∈ wcel 2113  Vcvv 3497   ⊆ wss 3939   × cxp 5556  dom cdm 5558  ran crn 5559   ↾ cres 5560   “ cima 5561  Rel wrel 5563  Fun wfun 6352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-fun 6360 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator