Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resfunexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of resfunexg 7128, shorter but requiring ax-pow 5301 and ax-un 7626. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 5932 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
3 | df-ima 5618 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
4 | funimaexg 6554 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | |
5 | 3, 4 | eqeltrrid 2843 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ 𝐵) ∈ V) |
6 | 2, 5 | jca 512 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V)) |
7 | xpexg 7638 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V) → (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) | |
8 | relres 5937 | . . . 4 ⊢ Rel (𝐴 ↾ 𝐵) | |
9 | relssdmrn 6191 | . . . 4 ⊢ (Rel (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) |
11 | ssexg 5260 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∧ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) → (𝐴 ↾ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 687 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V → (𝐴 ↾ 𝐵) ∈ V) |
13 | 6, 7, 12 | 3syl 18 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3896 × cxp 5603 dom cdm 5605 ran crn 5606 ↾ cres 5607 “ cima 5608 Rel wrel 5610 Fun wfun 6457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-fun 6465 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |