Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resfunexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of resfunexg 7073, shorter but requiring ax-pow 5283 and ax-un 7566. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 5904 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
3 | df-ima 5593 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
4 | funimaexg 6504 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | |
5 | 3, 4 | eqeltrrid 2844 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ 𝐵) ∈ V) |
6 | 2, 5 | jca 511 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V)) |
7 | xpexg 7578 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V) → (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) | |
8 | relres 5909 | . . . 4 ⊢ Rel (𝐴 ↾ 𝐵) | |
9 | relssdmrn 6161 | . . . 4 ⊢ (Rel (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) |
11 | ssexg 5242 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∧ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) → (𝐴 ↾ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 686 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V → (𝐴 ↾ 𝐵) ∈ V) |
13 | 6, 7, 12 | 3syl 18 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 × cxp 5578 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |