MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Structured version   Visualization version   GIF version

Theorem resfunexgALT 7631
Description: Alternate proof of resfunexg 6955, shorter but requiring ax-pow 5231 and ax-un 7441. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 5842 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
21adantl 485 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
3 df-ima 5532 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
4 funimaexg 6410 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
53, 4eqeltrrid 2895 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
62, 5jca 515 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V))
7 xpexg 7453 . 2 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
8 relres 5847 . . . 4 Rel (𝐴𝐵)
9 relssdmrn 6088 . . . 4 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
108, 9ax-mp 5 . . 3 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
11 ssexg 5191 . . 3 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
1210, 11mpan 689 . 2 ((dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V → (𝐴𝐵) ∈ V)
136, 7, 123syl 18 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  Vcvv 3441  wss 3881   × cxp 5517  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Rel wrel 5524  Fun wfun 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-fun 6326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator