MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Structured version   Visualization version   GIF version

Theorem resfunexgALT 7977
Description: Alternate proof of resfunexg 7239, shorter but requiring ax-pow 5372 and ax-un 7758. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 6036 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
21adantl 481 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
3 df-ima 5703 . . . 4 (𝐴𝐵) = ran (𝐴𝐵)
4 funimaexg 6658 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
53, 4eqeltrrid 2845 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
62, 5jca 511 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V))
7 xpexg 7773 . 2 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
8 relres 6027 . . . 4 Rel (𝐴𝐵)
9 relssdmrn 6293 . . . 4 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
108, 9ax-mp 5 . . 3 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
11 ssexg 5330 . . 3 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
1210, 11mpan 690 . 2 ((dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V → (𝐴𝐵) ∈ V)
136, 7, 123syl 18 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3479  wss 3964   × cxp 5688  dom cdm 5690  ran crn 5691  cres 5692  cima 5693  Rel wrel 5695  Fun wfun 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-fun 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator