![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resfunexgALT | Structured version Visualization version GIF version |
Description: Alternate proof of resfunexg 7216, shorter but requiring ax-pow 5363 and ax-un 7724. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 6005 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
3 | df-ima 5689 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
4 | funimaexg 6634 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | |
5 | 3, 4 | eqeltrrid 2838 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ 𝐵) ∈ V) |
6 | 2, 5 | jca 512 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V)) |
7 | xpexg 7736 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V) → (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) | |
8 | relres 6010 | . . . 4 ⊢ Rel (𝐴 ↾ 𝐵) | |
9 | relssdmrn 6267 | . . . 4 ⊢ (Rel (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) |
11 | ssexg 5323 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∧ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) → (𝐴 ↾ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 688 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V → (𝐴 ↾ 𝐵) ∈ V) |
13 | 6, 7, 12 | 3syl 18 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 × cxp 5674 dom cdm 5676 ran crn 5677 ↾ cres 5678 “ cima 5679 Rel wrel 5681 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |