MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st0 Structured version   Visualization version   GIF version

Theorem 1st0 7922
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
1st0 (1st ‘∅) = ∅

Proof of Theorem 1st0
StepHypRef Expression
1 1stval 7918 . 2 (1st ‘∅) = dom {∅}
2 dmsn0 6151 . . 3 dom {∅} = ∅
32unieqi 4866 . 2 dom {∅} =
4 uni0 4882 . 2 ∅ = ∅
51, 3, 43eqtri 2758 1 (1st ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4278  {csn 4571   cuni 4854  dom cdm 5611  cfv 6476  1st c1st 7914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fv 6484  df-1st 7916
This theorem is referenced by:  vafval  30575  fucofvalne  49357  reldmprcof1  49413  prcof1  49420
  Copyright terms: Public domain W3C validator