![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st0 | Structured version Visualization version GIF version |
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
1st0 | ⊢ (1st ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 8015 | . 2 ⊢ (1st ‘∅) = ∪ dom {∅} | |
2 | dmsn0 6231 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 2 | unieqi 4924 | . 2 ⊢ ∪ dom {∅} = ∪ ∅ |
4 | uni0 4940 | . 2 ⊢ ∪ ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2767 | 1 ⊢ (1st ‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4339 {csn 4631 ∪ cuni 4912 dom cdm 5689 ‘cfv 6563 1st c1st 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 |
This theorem is referenced by: vafval 30632 |
Copyright terms: Public domain | W3C validator |