Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st0 | Structured version Visualization version GIF version |
Description: The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
1st0 | ⊢ (1st ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stval 7696 | . 2 ⊢ (1st ‘∅) = ∪ dom {∅} | |
2 | dmsn0 6039 | . . 3 ⊢ dom {∅} = ∅ | |
3 | 2 | unieqi 4812 | . 2 ⊢ ∪ dom {∅} = ∪ ∅ |
4 | uni0 4829 | . 2 ⊢ ∪ ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2786 | 1 ⊢ (1st ‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4226 {csn 4523 ∪ cuni 4799 dom cdm 5525 ‘cfv 6336 1st c1st 7692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6295 df-fun 6338 df-fv 6344 df-1st 7694 |
This theorem is referenced by: vafval 28486 |
Copyright terms: Public domain | W3C validator |