MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnn0 Structured version   Visualization version   GIF version

Theorem rnsnn0 6155
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
rnsnn0 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)

Proof of Theorem rnsnn0
StepHypRef Expression
1 dmsnn0 6154 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 dm0rn0 5863 . . 3 (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅)
32necon3bii 2980 . 2 (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅)
41, 3bitri 275 1 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wne 2928  Vcvv 3436  c0 4280  {csn 4573   × cxp 5612  dom cdm 5614  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  2ndnpr  7926  2nd2val  7950
  Copyright terms: Public domain W3C validator