| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnsnn0 | Structured version Visualization version GIF version | ||
| Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
| Ref | Expression |
|---|---|
| rnsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnn0 6180 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
| 2 | dm0rn0 5888 | . . 3 ⊢ (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅) | |
| 3 | 2 | necon3bii 2977 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {csn 4589 × cxp 5636 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: 2ndnpr 7973 2nd2val 7997 |
| Copyright terms: Public domain | W3C validator |