MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnn0 Structured version   Visualization version   GIF version

Theorem rnsnn0 5857
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
rnsnn0 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)

Proof of Theorem rnsnn0
StepHypRef Expression
1 dmsnn0 5856 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 dm0rn0 5589 . . 3 (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅)
32necon3bii 3021 . 2 (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅)
41, 3bitri 267 1 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2107  wne 2969  Vcvv 3398  c0 4141  {csn 4398   × cxp 5355  dom cdm 5357  ran crn 5358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-cnv 5365  df-dm 5367  df-rn 5368
This theorem is referenced by:  2ndnpr  7452  2nd2val  7476
  Copyright terms: Public domain W3C validator