MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnn0 Structured version   Visualization version   GIF version

Theorem rnsnn0 6239
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
rnsnn0 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)

Proof of Theorem rnsnn0
StepHypRef Expression
1 dmsnn0 6238 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 dm0rn0 5949 . . 3 (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅)
32necon3bii 2999 . 2 (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅)
41, 3bitri 275 1 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wne 2946  Vcvv 3488  c0 4352  {csn 4648   × cxp 5698  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  2ndnpr  8035  2nd2val  8059
  Copyright terms: Public domain W3C validator