MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnn0 Structured version   Visualization version   GIF version

Theorem rnsnn0 6109
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
rnsnn0 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)

Proof of Theorem rnsnn0
StepHypRef Expression
1 dmsnn0 6108 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 dm0rn0 5832 . . 3 (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅)
32necon3bii 2998 . 2 (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅)
41, 3bitri 274 1 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2110  wne 2945  Vcvv 3431  c0 4262  {csn 4567   × cxp 5587  dom cdm 5589  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  2ndnpr  7823  2nd2val  7847
  Copyright terms: Public domain W3C validator