Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnsnn0 | Structured version Visualization version GIF version |
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
rnsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnn0 6110 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
2 | dm0rn0 5834 | . . 3 ⊢ (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅) | |
3 | 2 | necon3bii 2996 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: 2ndnpr 7836 2nd2val 7860 |
Copyright terms: Public domain | W3C validator |