| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2nd0 | Structured version Visualization version GIF version | ||
| Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| Ref | Expression |
|---|---|
| 2nd0 | ⊢ (2nd ‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7934 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} | |
| 2 | dmsn0 6162 | . . . 4 ⊢ dom {∅} = ∅ | |
| 3 | dm0rn0 5871 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ran {∅} = ∅ |
| 5 | 4 | unieqi 4873 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
| 6 | uni0 4889 | . 2 ⊢ ∪ ∅ = ∅ | |
| 7 | 1, 5, 6 | 3eqtri 2756 | 1 ⊢ (2nd ‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 {csn 4579 ∪ cuni 4861 dom cdm 5623 ran crn 5624 ‘cfv 6486 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-2nd 7932 |
| This theorem is referenced by: smfval 30567 fucofvalne 49311 reldmprcof2 49368 |
| Copyright terms: Public domain | W3C validator |