MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd0 Structured version   Visualization version   GIF version

Theorem 2nd0 7978
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 2ndval 7974 . 2 (2nd ‘∅) = ran {∅}
2 dmsn0 6185 . . . 4 dom {∅} = ∅
3 dm0rn0 5891 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
42, 3mpbi 230 . . 3 ran {∅} = ∅
54unieqi 4886 . 2 ran {∅} =
6 uni0 4902 . 2 ∅ = ∅
71, 5, 63eqtri 2757 1 (2nd ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4299  {csn 4592   cuni 4874  dom cdm 5641  ran crn 5642  cfv 6514  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-2nd 7972
This theorem is referenced by:  smfval  30541  fucofvalne  49318  reldmprcof2  49375
  Copyright terms: Public domain W3C validator