| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2nd0 | Structured version Visualization version GIF version | ||
| Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| Ref | Expression |
|---|---|
| 2nd0 | ⊢ (2nd ‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7991 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} | |
| 2 | dmsn0 6198 | . . . 4 ⊢ dom {∅} = ∅ | |
| 3 | dm0rn0 5904 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ran {∅} = ∅ |
| 5 | 4 | unieqi 4895 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
| 6 | uni0 4911 | . 2 ⊢ ∪ ∅ = ∅ | |
| 7 | 1, 5, 6 | 3eqtri 2762 | 1 ⊢ (2nd ‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 {csn 4601 ∪ cuni 4883 dom cdm 5654 ran crn 5655 ‘cfv 6531 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-2nd 7989 |
| This theorem is referenced by: smfval 30586 fucofvalne 49236 reldmprcof2 49292 |
| Copyright terms: Public domain | W3C validator |