MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd0 Structured version   Visualization version   GIF version

Theorem 2nd0 8037
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 2ndval 8033 . 2 (2nd ‘∅) = ran {∅}
2 dmsn0 6240 . . . 4 dom {∅} = ∅
3 dm0rn0 5949 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
42, 3mpbi 230 . . 3 ran {∅} = ∅
54unieqi 4943 . 2 ran {∅} =
6 uni0 4959 . 2 ∅ = ∅
71, 5, 63eqtri 2772 1 (2nd ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  {csn 4648   cuni 4931  dom cdm 5700  ran crn 5701  cfv 6573  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031
This theorem is referenced by:  smfval  30637
  Copyright terms: Public domain W3C validator