| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2nd0 | Structured version Visualization version GIF version | ||
| Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| Ref | Expression |
|---|---|
| 2nd0 | ⊢ (2nd ‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7924 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} | |
| 2 | dmsn0 6156 | . . . 4 ⊢ dom {∅} = ∅ | |
| 3 | dm0rn0 5864 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ ran {∅} = ∅ |
| 5 | 4 | unieqi 4871 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
| 6 | uni0 4887 | . 2 ⊢ ∪ ∅ = ∅ | |
| 7 | 1, 5, 6 | 3eqtri 2758 | 1 ⊢ (2nd ‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 {csn 4576 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ‘cfv 6481 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 |
| This theorem is referenced by: smfval 30580 fucofvalne 49356 reldmprcof2 49413 |
| Copyright terms: Public domain | W3C validator |