MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd0 Structured version   Visualization version   GIF version

Theorem 2nd0 7978
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 2ndval 7974 . 2 (2nd ‘∅) = ran {∅}
2 dmsn0 6205 . . . 4 dom {∅} = ∅
3 dm0rn0 5922 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
42, 3mpbi 229 . . 3 ran {∅} = ∅
54unieqi 4920 . 2 ran {∅} =
6 uni0 4938 . 2 ∅ = ∅
71, 5, 63eqtri 2764 1 (2nd ‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4321  {csn 4627   cuni 4907  dom cdm 5675  ran crn 5676  cfv 6540  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-2nd 7972
This theorem is referenced by:  smfval  29845
  Copyright terms: Public domain W3C validator