Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgextlsp Structured version   Visualization version   GIF version

Theorem drgextlsp 33604
Description: The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
drgext.f 𝐹 = (𝐸s 𝑈)
drgext.3 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
drgextlsp (𝜑𝑈 ∈ (LSubSp‘𝐵))

Proof of Theorem drgextlsp
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (𝜑 → (Scalar‘𝐵) = (Scalar‘𝐵))
2 eqidd 2732 . 2 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵)))
3 eqidd 2732 . 2 (𝜑 → (Base‘𝐵) = (Base‘𝐵))
4 eqidd 2732 . 2 (𝜑 → (+g𝐵) = (+g𝐵))
5 eqidd 2732 . 2 (𝜑 → ( ·𝑠𝐵) = ( ·𝑠𝐵))
6 eqidd 2732 . 2 (𝜑 → (LSubSp‘𝐵) = (LSubSp‘𝐵))
7 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
8 eqid 2731 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
98subrgss 20488 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
107, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
11 drgext.b . . . . 5 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1211a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1312, 10srabase 21112 . . 3 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
1410, 13sseqtrd 3971 . 2 (𝜑𝑈 ⊆ (Base‘𝐵))
15 eqid 2731 . . . 4 (1r𝐸) = (1r𝐸)
1615subrg1cl 20496 . . 3 (𝑈 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝑈)
17 ne0i 4291 . . 3 ((1r𝐸) ∈ 𝑈𝑈 ≠ ∅)
187, 16, 173syl 18 . 2 (𝜑𝑈 ≠ ∅)
19 drgext.3 . . . . . 6 (𝜑𝐹 ∈ DivRing)
20 drnggrp 20655 . . . . . 6 (𝐹 ∈ DivRing → 𝐹 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Grp)
2312, 10sravsca 21116 . . . . . . 7 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
24 drgext.f . . . . . . . . 9 𝐹 = (𝐸s 𝑈)
25 eqid 2731 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
2624, 25ressmulr 17211 . . . . . . . 8 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
277, 26syl 17 . . . . . . 7 (𝜑 → (.r𝐸) = (.r𝐹))
2823, 27eqtr3d 2768 . . . . . 6 (𝜑 → ( ·𝑠𝐵) = (.r𝐹))
2928oveqdr 7374 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) = (𝑥(.r𝐹)𝑎))
30 drngring 20652 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
3119, 30syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Ring)
33 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝐵)))
3412, 10srasca 21115 . . . . . . . . . 10 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
3524, 34eqtrid 2778 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝐵))
3635fveq2d 6826 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3736adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3833, 37eleqtrrd 2834 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘𝐹))
39 simpr2 1196 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
4024, 8ressbas2 17149 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4110, 40syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐹))
4241adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈 = (Base‘𝐹))
4339, 42eleqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎 ∈ (Base‘𝐹))
44 eqid 2731 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
45 eqid 2731 . . . . . . 7 (.r𝐹) = (.r𝐹)
4644, 45ringcl 20169 . . . . . 6 ((𝐹 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4732, 38, 43, 46syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4829, 47eqeltrd 2831 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹))
49 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
5049, 42eleqtrd 2833 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏 ∈ (Base‘𝐹))
51 eqid 2731 . . . . 5 (+g𝐹) = (+g𝐹)
5244, 51grpcl 18854 . . . 4 ((𝐹 ∈ Grp ∧ (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹) ∧ 𝑏 ∈ (Base‘𝐹)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5322, 48, 50, 52syl3anc 1373 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5412, 10sraaddg 21113 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐵))
55 eqid 2731 . . . . . . . 8 (+g𝐸) = (+g𝐸)
5624, 55ressplusg 17195 . . . . . . 7 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐸) = (+g𝐹))
577, 56syl 17 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐹))
5854, 57eqtr3d 2768 . . . . 5 (𝜑 → (+g𝐵) = (+g𝐹))
5958adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (+g𝐵) = (+g𝐹))
6059oveqd 7363 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) = ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏))
6153, 60, 423eltr4d 2846 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) ∈ 𝑈)
621, 2, 3, 4, 5, 6, 14, 18, 61islssd 20869 1 (𝜑𝑈 ∈ (LSubSp‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wss 3902  c0 4283  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  Grpcgrp 18846  1rcur 20100  Ringcrg 20152  SubRingcsubrg 20485  DivRingcdr 20645  LSubSpclss 20865  subringAlg csra 21106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-mgp 20060  df-ring 20154  df-subrg 20486  df-drng 20647  df-lss 20866  df-sra 21108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator