Step | Hyp | Ref
| Expression |
1 | | eqidd 2734 |
. 2
β’ (π β (Scalarβπ΅) = (Scalarβπ΅)) |
2 | | eqidd 2734 |
. 2
β’ (π β
(Baseβ(Scalarβπ΅)) = (Baseβ(Scalarβπ΅))) |
3 | | eqidd 2734 |
. 2
β’ (π β (Baseβπ΅) = (Baseβπ΅)) |
4 | | eqidd 2734 |
. 2
β’ (π β (+gβπ΅) = (+gβπ΅)) |
5 | | eqidd 2734 |
. 2
β’ (π β (
Β·π βπ΅) = ( Β·π
βπ΅)) |
6 | | eqidd 2734 |
. 2
β’ (π β (LSubSpβπ΅) = (LSubSpβπ΅)) |
7 | | drgext.2 |
. . . 4
β’ (π β π β (SubRingβπΈ)) |
8 | | eqid 2733 |
. . . . 5
β’
(BaseβπΈ) =
(BaseβπΈ) |
9 | 8 | subrgss 20265 |
. . . 4
β’ (π β (SubRingβπΈ) β π β (BaseβπΈ)) |
10 | 7, 9 | syl 17 |
. . 3
β’ (π β π β (BaseβπΈ)) |
11 | | drgext.b |
. . . . 5
β’ π΅ = ((subringAlg βπΈ)βπ) |
12 | 11 | a1i 11 |
. . . 4
β’ (π β π΅ = ((subringAlg βπΈ)βπ)) |
13 | 12, 10 | srabase 20685 |
. . 3
β’ (π β (BaseβπΈ) = (Baseβπ΅)) |
14 | 10, 13 | sseqtrd 3988 |
. 2
β’ (π β π β (Baseβπ΅)) |
15 | | eqid 2733 |
. . . 4
β’
(1rβπΈ) = (1rβπΈ) |
16 | 15 | subrg1cl 20272 |
. . 3
β’ (π β (SubRingβπΈ) β
(1rβπΈ)
β π) |
17 | | ne0i 4298 |
. . 3
β’
((1rβπΈ) β π β π β β
) |
18 | 7, 16, 17 | 3syl 18 |
. 2
β’ (π β π β β
) |
19 | | drgext.3 |
. . . . . 6
β’ (π β πΉ β DivRing) |
20 | | drnggrp 20229 |
. . . . . 6
β’ (πΉ β DivRing β πΉ β Grp) |
21 | 19, 20 | syl 17 |
. . . . 5
β’ (π β πΉ β Grp) |
22 | 21 | adantr 482 |
. . . 4
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β πΉ β Grp) |
23 | 12, 10 | sravsca 20693 |
. . . . . . 7
β’ (π β (.rβπΈ) = (
Β·π βπ΅)) |
24 | | drgext.f |
. . . . . . . . 9
β’ πΉ = (πΈ βΎs π) |
25 | | eqid 2733 |
. . . . . . . . 9
β’
(.rβπΈ) = (.rβπΈ) |
26 | 24, 25 | ressmulr 17196 |
. . . . . . . 8
β’ (π β (SubRingβπΈ) β
(.rβπΈ) =
(.rβπΉ)) |
27 | 7, 26 | syl 17 |
. . . . . . 7
β’ (π β (.rβπΈ) = (.rβπΉ)) |
28 | 23, 27 | eqtr3d 2775 |
. . . . . 6
β’ (π β (
Β·π βπ΅) = (.rβπΉ)) |
29 | 28 | oveqdr 7389 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β (π₯( Β·π
βπ΅)π) = (π₯(.rβπΉ)π)) |
30 | | drngring 20226 |
. . . . . . . 8
β’ (πΉ β DivRing β πΉ β Ring) |
31 | 19, 30 | syl 17 |
. . . . . . 7
β’ (π β πΉ β Ring) |
32 | 31 | adantr 482 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β πΉ β Ring) |
33 | | simpr1 1195 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π₯ β (Baseβ(Scalarβπ΅))) |
34 | 12, 10 | srasca 20691 |
. . . . . . . . . 10
β’ (π β (πΈ βΎs π) = (Scalarβπ΅)) |
35 | 24, 34 | eqtrid 2785 |
. . . . . . . . 9
β’ (π β πΉ = (Scalarβπ΅)) |
36 | 35 | fveq2d 6850 |
. . . . . . . 8
β’ (π β (BaseβπΉ) =
(Baseβ(Scalarβπ΅))) |
37 | 36 | adantr 482 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β (BaseβπΉ) = (Baseβ(Scalarβπ΅))) |
38 | 33, 37 | eleqtrrd 2837 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π₯ β (BaseβπΉ)) |
39 | | simpr2 1196 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π β π) |
40 | 24, 8 | ressbas2 17128 |
. . . . . . . . 9
β’ (π β (BaseβπΈ) β π = (BaseβπΉ)) |
41 | 10, 40 | syl 17 |
. . . . . . . 8
β’ (π β π = (BaseβπΉ)) |
42 | 41 | adantr 482 |
. . . . . . 7
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π = (BaseβπΉ)) |
43 | 39, 42 | eleqtrd 2836 |
. . . . . 6
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π β (BaseβπΉ)) |
44 | | eqid 2733 |
. . . . . . 7
β’
(BaseβπΉ) =
(BaseβπΉ) |
45 | | eqid 2733 |
. . . . . . 7
β’
(.rβπΉ) = (.rβπΉ) |
46 | 44, 45 | ringcl 19989 |
. . . . . 6
β’ ((πΉ β Ring β§ π₯ β (BaseβπΉ) β§ π β (BaseβπΉ)) β (π₯(.rβπΉ)π) β (BaseβπΉ)) |
47 | 32, 38, 43, 46 | syl3anc 1372 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β (π₯(.rβπΉ)π) β (BaseβπΉ)) |
48 | 29, 47 | eqeltrd 2834 |
. . . 4
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β (π₯( Β·π
βπ΅)π) β (BaseβπΉ)) |
49 | | simpr3 1197 |
. . . . 5
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π β π) |
50 | 49, 42 | eleqtrd 2836 |
. . . 4
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β π β (BaseβπΉ)) |
51 | | eqid 2733 |
. . . . 5
β’
(+gβπΉ) = (+gβπΉ) |
52 | 44, 51 | grpcl 18764 |
. . . 4
β’ ((πΉ β Grp β§ (π₯(
Β·π βπ΅)π) β (BaseβπΉ) β§ π β (BaseβπΉ)) β ((π₯( Β·π
βπ΅)π)(+gβπΉ)π) β (BaseβπΉ)) |
53 | 22, 48, 50, 52 | syl3anc 1372 |
. . 3
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β ((π₯( Β·π
βπ΅)π)(+gβπΉ)π) β (BaseβπΉ)) |
54 | 12, 10 | sraaddg 20687 |
. . . . . 6
β’ (π β (+gβπΈ) = (+gβπ΅)) |
55 | | eqid 2733 |
. . . . . . . 8
β’
(+gβπΈ) = (+gβπΈ) |
56 | 24, 55 | ressplusg 17179 |
. . . . . . 7
β’ (π β (SubRingβπΈ) β
(+gβπΈ) =
(+gβπΉ)) |
57 | 7, 56 | syl 17 |
. . . . . 6
β’ (π β (+gβπΈ) = (+gβπΉ)) |
58 | 54, 57 | eqtr3d 2775 |
. . . . 5
β’ (π β (+gβπ΅) = (+gβπΉ)) |
59 | 58 | adantr 482 |
. . . 4
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β (+gβπ΅) = (+gβπΉ)) |
60 | 59 | oveqd 7378 |
. . 3
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β ((π₯( Β·π
βπ΅)π)(+gβπ΅)π) = ((π₯( Β·π
βπ΅)π)(+gβπΉ)π)) |
61 | 53, 60, 42 | 3eltr4d 2849 |
. 2
β’ ((π β§ (π₯ β (Baseβ(Scalarβπ΅)) β§ π β π β§ π β π)) β ((π₯( Β·π
βπ΅)π)(+gβπ΅)π) β π) |
62 | 1, 2, 3, 4, 5, 6, 14, 18, 61 | islssd 20440 |
1
β’ (π β π β (LSubSpβπ΅)) |