Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgextlsp Structured version   Visualization version   GIF version

Theorem drgextlsp 31583
Description: The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
drgext.f 𝐹 = (𝐸s 𝑈)
drgext.3 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
drgextlsp (𝜑𝑈 ∈ (LSubSp‘𝐵))

Proof of Theorem drgextlsp
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (𝜑 → (Scalar‘𝐵) = (Scalar‘𝐵))
2 eqidd 2739 . 2 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵)))
3 eqidd 2739 . 2 (𝜑 → (Base‘𝐵) = (Base‘𝐵))
4 eqidd 2739 . 2 (𝜑 → (+g𝐵) = (+g𝐵))
5 eqidd 2739 . 2 (𝜑 → ( ·𝑠𝐵) = ( ·𝑠𝐵))
6 eqidd 2739 . 2 (𝜑 → (LSubSp‘𝐵) = (LSubSp‘𝐵))
7 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
8 eqid 2738 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
98subrgss 19940 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
107, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
11 drgext.b . . . . 5 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1211a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1312, 10srabase 20356 . . 3 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
1410, 13sseqtrd 3957 . 2 (𝜑𝑈 ⊆ (Base‘𝐵))
15 eqid 2738 . . . 4 (1r𝐸) = (1r𝐸)
1615subrg1cl 19947 . . 3 (𝑈 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝑈)
17 ne0i 4265 . . 3 ((1r𝐸) ∈ 𝑈𝑈 ≠ ∅)
187, 16, 173syl 18 . 2 (𝜑𝑈 ≠ ∅)
19 drgext.3 . . . . . 6 (𝜑𝐹 ∈ DivRing)
20 drnggrp 19914 . . . . . 6 (𝐹 ∈ DivRing → 𝐹 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Grp)
2312, 10sravsca 20363 . . . . . . 7 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
24 drgext.f . . . . . . . . 9 𝐹 = (𝐸s 𝑈)
25 eqid 2738 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
2624, 25ressmulr 16943 . . . . . . . 8 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
277, 26syl 17 . . . . . . 7 (𝜑 → (.r𝐸) = (.r𝐹))
2823, 27eqtr3d 2780 . . . . . 6 (𝜑 → ( ·𝑠𝐵) = (.r𝐹))
2928oveqdr 7283 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) = (𝑥(.r𝐹)𝑎))
30 drngring 19913 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
3119, 30syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Ring)
33 simpr1 1192 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝐵)))
3412, 10srasca 20362 . . . . . . . . . 10 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
3524, 34syl5eq 2791 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝐵))
3635fveq2d 6760 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3736adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3833, 37eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘𝐹))
39 simpr2 1193 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
4024, 8ressbas2 16875 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4110, 40syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐹))
4241adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈 = (Base‘𝐹))
4339, 42eleqtrd 2841 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎 ∈ (Base‘𝐹))
44 eqid 2738 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
45 eqid 2738 . . . . . . 7 (.r𝐹) = (.r𝐹)
4644, 45ringcl 19715 . . . . . 6 ((𝐹 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4732, 38, 43, 46syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4829, 47eqeltrd 2839 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹))
49 simpr3 1194 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
5049, 42eleqtrd 2841 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏 ∈ (Base‘𝐹))
51 eqid 2738 . . . . 5 (+g𝐹) = (+g𝐹)
5244, 51grpcl 18500 . . . 4 ((𝐹 ∈ Grp ∧ (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹) ∧ 𝑏 ∈ (Base‘𝐹)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5322, 48, 50, 52syl3anc 1369 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5412, 10sraaddg 20358 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐵))
55 eqid 2738 . . . . . . . 8 (+g𝐸) = (+g𝐸)
5624, 55ressplusg 16926 . . . . . . 7 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐸) = (+g𝐹))
577, 56syl 17 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐹))
5854, 57eqtr3d 2780 . . . . 5 (𝜑 → (+g𝐵) = (+g𝐹))
5958adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (+g𝐵) = (+g𝐹))
6059oveqd 7272 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) = ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏))
6153, 60, 423eltr4d 2854 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) ∈ 𝑈)
621, 2, 3, 4, 5, 6, 14, 18, 61islssd 20112 1 (𝜑𝑈 ∈ (LSubSp‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492  1rcur 19652  Ringcrg 19698  DivRingcdr 19906  SubRingcsubrg 19935  LSubSpclss 20108  subringAlg csra 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ring 19700  df-drng 19908  df-subrg 19937  df-lss 20109  df-sra 20349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator