Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drgextlsp Structured version   Visualization version   GIF version

Theorem drgextlsp 33326
Description: The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023.)
Hypotheses
Ref Expression
drgext.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
drgext.1 (𝜑𝐸 ∈ DivRing)
drgext.2 (𝜑𝑈 ∈ (SubRing‘𝐸))
drgext.f 𝐹 = (𝐸s 𝑈)
drgext.3 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
drgextlsp (𝜑𝑈 ∈ (LSubSp‘𝐵))

Proof of Theorem drgextlsp
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2729 . 2 (𝜑 → (Scalar‘𝐵) = (Scalar‘𝐵))
2 eqidd 2729 . 2 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵)))
3 eqidd 2729 . 2 (𝜑 → (Base‘𝐵) = (Base‘𝐵))
4 eqidd 2729 . 2 (𝜑 → (+g𝐵) = (+g𝐵))
5 eqidd 2729 . 2 (𝜑 → ( ·𝑠𝐵) = ( ·𝑠𝐵))
6 eqidd 2729 . 2 (𝜑 → (LSubSp‘𝐵) = (LSubSp‘𝐵))
7 drgext.2 . . . 4 (𝜑𝑈 ∈ (SubRing‘𝐸))
8 eqid 2728 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
98subrgss 20518 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
107, 9syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐸))
11 drgext.b . . . . 5 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
1211a1i 11 . . . 4 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
1312, 10srabase 21070 . . 3 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
1410, 13sseqtrd 4022 . 2 (𝜑𝑈 ⊆ (Base‘𝐵))
15 eqid 2728 . . . 4 (1r𝐸) = (1r𝐸)
1615subrg1cl 20526 . . 3 (𝑈 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝑈)
17 ne0i 4338 . . 3 ((1r𝐸) ∈ 𝑈𝑈 ≠ ∅)
187, 16, 173syl 18 . 2 (𝜑𝑈 ≠ ∅)
19 drgext.3 . . . . . 6 (𝜑𝐹 ∈ DivRing)
20 drnggrp 20641 . . . . . 6 (𝐹 ∈ DivRing → 𝐹 ∈ Grp)
2119, 20syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
2221adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Grp)
2312, 10sravsca 21078 . . . . . . 7 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
24 drgext.f . . . . . . . . 9 𝐹 = (𝐸s 𝑈)
25 eqid 2728 . . . . . . . . 9 (.r𝐸) = (.r𝐸)
2624, 25ressmulr 17295 . . . . . . . 8 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
277, 26syl 17 . . . . . . 7 (𝜑 → (.r𝐸) = (.r𝐹))
2823, 27eqtr3d 2770 . . . . . 6 (𝜑 → ( ·𝑠𝐵) = (.r𝐹))
2928oveqdr 7454 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) = (𝑥(.r𝐹)𝑎))
30 drngring 20638 . . . . . . . 8 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
3119, 30syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
3231adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝐹 ∈ Ring)
33 simpr1 1191 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝐵)))
3412, 10srasca 21076 . . . . . . . . . 10 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
3524, 34eqtrid 2780 . . . . . . . . 9 (𝜑𝐹 = (Scalar‘𝐵))
3635fveq2d 6906 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3736adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
3833, 37eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘𝐹))
39 simpr2 1192 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
4024, 8ressbas2 17225 . . . . . . . . 9 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4110, 40syl 17 . . . . . . . 8 (𝜑𝑈 = (Base‘𝐹))
4241adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈 = (Base‘𝐹))
4339, 42eleqtrd 2831 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎 ∈ (Base‘𝐹))
44 eqid 2728 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
45 eqid 2728 . . . . . . 7 (.r𝐹) = (.r𝐹)
4644, 45ringcl 20197 . . . . . 6 ((𝐹 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4732, 38, 43, 46syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥(.r𝐹)𝑎) ∈ (Base‘𝐹))
4829, 47eqeltrd 2829 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹))
49 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
5049, 42eleqtrd 2831 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏 ∈ (Base‘𝐹))
51 eqid 2728 . . . . 5 (+g𝐹) = (+g𝐹)
5244, 51grpcl 18905 . . . 4 ((𝐹 ∈ Grp ∧ (𝑥( ·𝑠𝐵)𝑎) ∈ (Base‘𝐹) ∧ 𝑏 ∈ (Base‘𝐹)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5322, 48, 50, 52syl3anc 1368 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏) ∈ (Base‘𝐹))
5412, 10sraaddg 21072 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐵))
55 eqid 2728 . . . . . . . 8 (+g𝐸) = (+g𝐸)
5624, 55ressplusg 17278 . . . . . . 7 (𝑈 ∈ (SubRing‘𝐸) → (+g𝐸) = (+g𝐹))
577, 56syl 17 . . . . . 6 (𝜑 → (+g𝐸) = (+g𝐹))
5854, 57eqtr3d 2770 . . . . 5 (𝜑 → (+g𝐵) = (+g𝐹))
5958adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → (+g𝐵) = (+g𝐹))
6059oveqd 7443 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) = ((𝑥( ·𝑠𝐵)𝑎)(+g𝐹)𝑏))
6153, 60, 423eltr4d 2844 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐵)) ∧ 𝑎𝑈𝑏𝑈)) → ((𝑥( ·𝑠𝐵)𝑎)(+g𝐵)𝑏) ∈ 𝑈)
621, 2, 3, 4, 5, 6, 14, 18, 61islssd 20826 1 (𝜑𝑈 ∈ (LSubSp‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wss 3949  c0 4326  cfv 6553  (class class class)co 7426  Basecbs 17187  s cress 17216  +gcplusg 17240  .rcmulr 17241  Scalarcsca 17243   ·𝑠 cvsca 17244  Grpcgrp 18897  1rcur 20128  Ringcrg 20180  SubRingcsubrg 20513  DivRingcdr 20631  LSubSpclss 20822  subringAlg csra 21063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-mgp 20082  df-ring 20182  df-subrg 20515  df-drng 20633  df-lss 20823  df-sra 21065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator