Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhgrp Structured version   Visualization version   GIF version

Theorem dvhgrp 41110
Description: The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
Assertion
Ref Expression
dvhgrp ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)

Proof of Theorem dvhgrp
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2736 . . . 4 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 41090 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2742 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . 3 + = (+g𝑈)
98a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhgrp.p . . . 4 = (+g𝐷)
121, 2, 3, 4, 10, 11, 8dvhvaddcl 41098 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸))) → (𝑓 + 𝑔) ∈ (𝑇 × 𝐸))
13123impb 1114 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (𝑓 + 𝑔) ∈ (𝑇 × 𝐸))
141, 2, 3, 4, 10, 11, 8dvhvaddass 41100 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸) ∧ ∈ (𝑇 × 𝐸))) → ((𝑓 + 𝑔) + ) = (𝑓 + (𝑔 + )))
15 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
1615, 1, 2idltrn 40153 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
17 eqid 2736 . . . . . . . 8 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
181, 17, 4, 10dvhsca 41085 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
191, 17erngdv 40996 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2018, 19eqeltrd 2840 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
21 drnggrp 20740 . . . . . 6 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
2220, 21syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
23 eqid 2736 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
24 dvhgrp.o . . . . . 6 0 = (0g𝐷)
2523, 24grpidcl 18984 . . . . 5 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
2622, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐷))
271, 3, 4, 10, 23dvhbase 41086 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
2826, 27eleqtrd 2842 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
29 opelxpi 5721 . . 3 ((( I ↾ 𝐵) ∈ 𝑇0𝐸) → ⟨( I ↾ 𝐵), 0 ⟩ ∈ (𝑇 × 𝐸))
3016, 28, 29syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨( I ↾ 𝐵), 0 ⟩ ∈ (𝑇 × 𝐸))
31 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3216adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
3328adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 0𝐸)
34 xp1st 8047 . . . . . 6 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
3534adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓) ∈ 𝑇)
36 xp2nd 8048 . . . . . 6 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
3736adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (2nd𝑓) ∈ 𝐸)
381, 2, 3, 4, 10, 8, 11dvhopvadd 41096 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇0𝐸) ∧ ((1st𝑓) ∈ 𝑇 ∧ (2nd𝑓) ∈ 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩)
3931, 32, 33, 35, 37, 38syl122anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩)
4015, 1, 2ltrn1o 40127 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑓) ∈ 𝑇) → (1st𝑓):𝐵1-1-onto𝐵)
4135, 40syldan 591 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓):𝐵1-1-onto𝐵)
42 f1of 6847 . . . . . 6 ((1st𝑓):𝐵1-1-onto𝐵 → (1st𝑓):𝐵𝐵)
43 fcoi2 6782 . . . . . 6 ((1st𝑓):𝐵𝐵 → (( I ↾ 𝐵) ∘ (1st𝑓)) = (1st𝑓))
4441, 42, 433syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝐵) ∘ (1st𝑓)) = (1st𝑓))
4522adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 𝐷 ∈ Grp)
4627adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (Base‘𝐷) = 𝐸)
4737, 46eleqtrrd 2843 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (2nd𝑓) ∈ (Base‘𝐷))
4823, 11, 24grplid 18986 . . . . . 6 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ( 0 (2nd𝑓)) = (2nd𝑓))
4945, 47, 48syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ( 0 (2nd𝑓)) = (2nd𝑓))
5044, 49opeq12d 4880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩ = ⟨(1st𝑓), (2nd𝑓)⟩)
5139, 50eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(1st𝑓), (2nd𝑓)⟩)
52 1st2nd2 8054 . . . . 5 (𝑓 ∈ (𝑇 × 𝐸) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
5352adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
5453oveq2d 7448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ 𝑓) = (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩))
5551, 54, 533eqtr4d 2786 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ 𝑓) = 𝑓)
561, 2ltrncnv 40149 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑓) ∈ 𝑇) → (1st𝑓) ∈ 𝑇)
5735, 56syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓) ∈ 𝑇)
58 dvhgrp.i . . . . . 6 𝐼 = (invg𝐷)
5923, 58grpinvcl 19006 . . . . 5 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → (𝐼‘(2nd𝑓)) ∈ (Base‘𝐷))
6045, 47, 59syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐼‘(2nd𝑓)) ∈ (Base‘𝐷))
6160, 46eleqtrd 2842 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐼‘(2nd𝑓)) ∈ 𝐸)
62 opelxpi 5721 . . 3 (((1st𝑓) ∈ 𝑇 ∧ (𝐼‘(2nd𝑓)) ∈ 𝐸) → ⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ ∈ (𝑇 × 𝐸))
6357, 61, 62syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ ∈ (𝑇 × 𝐸))
6453oveq2d 7448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + 𝑓) = (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩))
651, 2, 3, 4, 10, 8, 11dvhopvadd 41096 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((1st𝑓) ∈ 𝑇 ∧ (𝐼‘(2nd𝑓)) ∈ 𝐸) ∧ ((1st𝑓) ∈ 𝑇 ∧ (2nd𝑓) ∈ 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩)
6631, 57, 61, 35, 37, 65syl122anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩)
67 f1ococnv1 6876 . . . . . 6 ((1st𝑓):𝐵1-1-onto𝐵 → ((1st𝑓) ∘ (1st𝑓)) = ( I ↾ 𝐵))
6841, 67syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ((1st𝑓) ∘ (1st𝑓)) = ( I ↾ 𝐵))
6923, 11, 24, 58grplinv 19008 . . . . . 6 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((𝐼‘(2nd𝑓)) (2nd𝑓)) = 0 )
7045, 47, 69syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ((𝐼‘(2nd𝑓)) (2nd𝑓)) = 0 )
7168, 70opeq12d 4880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩ = ⟨( I ↾ 𝐵), 0 ⟩)
7266, 71eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨( I ↾ 𝐵), 0 ⟩)
7364, 72eqtrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + 𝑓) = ⟨( I ↾ 𝐵), 0 ⟩)
747, 9, 13, 14, 30, 55, 63, 73isgrpd 18977 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4631   I cid 5576   × cxp 5682  ccnv 5683  cres 5686  ccom 5688  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1st c1st 8013  2nd c2nd 8014  Basecbs 17248  +gcplusg 17298  Scalarcsca 17301  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953  DivRingcdr 20730  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  TEndoctendo 40755  EDRingcedring 40756  DVecHcdvh 41081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-drng 20732  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tendo 40758  df-edring 40760  df-dvech 41082
This theorem is referenced by:  dvhlveclem  41111
  Copyright terms: Public domain W3C validator