Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhgrp Structured version   Visualization version   GIF version

Theorem dvhgrp 41154
Description: The full vector space 𝑈 constructed from a Hilbert lattice 𝐾 (given a fiducial hyperplane 𝑊) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
Assertion
Ref Expression
dvhgrp ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)

Proof of Theorem dvhgrp
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2731 . . . 4 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 41134 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2737 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . 3 + = (+g𝑈)
98a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
11 dvhgrp.p . . . 4 = (+g𝐷)
121, 2, 3, 4, 10, 11, 8dvhvaddcl 41142 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸))) → (𝑓 + 𝑔) ∈ (𝑇 × 𝐸))
13123impb 1114 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (𝑓 + 𝑔) ∈ (𝑇 × 𝐸))
141, 2, 3, 4, 10, 11, 8dvhvaddass 41144 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓 ∈ (𝑇 × 𝐸) ∧ 𝑔 ∈ (𝑇 × 𝐸) ∧ ∈ (𝑇 × 𝐸))) → ((𝑓 + 𝑔) + ) = (𝑓 + (𝑔 + )))
15 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
1615, 1, 2idltrn 40197 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
17 eqid 2731 . . . . . . . 8 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
181, 17, 4, 10dvhsca 41129 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
191, 17erngdv 41040 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2018, 19eqeltrd 2831 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
21 drnggrp 20654 . . . . . 6 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
2220, 21syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
23 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
24 dvhgrp.o . . . . . 6 0 = (0g𝐷)
2523, 24grpidcl 18878 . . . . 5 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
2622, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐷))
271, 3, 4, 10, 23dvhbase 41130 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
2826, 27eleqtrd 2833 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
29 opelxpi 5651 . . 3 ((( I ↾ 𝐵) ∈ 𝑇0𝐸) → ⟨( I ↾ 𝐵), 0 ⟩ ∈ (𝑇 × 𝐸))
3016, 28, 29syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ⟨( I ↾ 𝐵), 0 ⟩ ∈ (𝑇 × 𝐸))
31 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3216adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
3328adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 0𝐸)
34 xp1st 7953 . . . . . 6 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
3534adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓) ∈ 𝑇)
36 xp2nd 7954 . . . . . 6 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
3736adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (2nd𝑓) ∈ 𝐸)
381, 2, 3, 4, 10, 8, 11dvhopvadd 41140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇0𝐸) ∧ ((1st𝑓) ∈ 𝑇 ∧ (2nd𝑓) ∈ 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩)
3931, 32, 33, 35, 37, 38syl122anc 1381 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩)
4015, 1, 2ltrn1o 40171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑓) ∈ 𝑇) → (1st𝑓):𝐵1-1-onto𝐵)
4135, 40syldan 591 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓):𝐵1-1-onto𝐵)
42 f1of 6763 . . . . . 6 ((1st𝑓):𝐵1-1-onto𝐵 → (1st𝑓):𝐵𝐵)
43 fcoi2 6698 . . . . . 6 ((1st𝑓):𝐵𝐵 → (( I ↾ 𝐵) ∘ (1st𝑓)) = (1st𝑓))
4441, 42, 433syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝐵) ∘ (1st𝑓)) = (1st𝑓))
4522adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 𝐷 ∈ Grp)
4627adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (Base‘𝐷) = 𝐸)
4737, 46eleqtrrd 2834 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (2nd𝑓) ∈ (Base‘𝐷))
4823, 11, 24grplid 18880 . . . . . 6 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ( 0 (2nd𝑓)) = (2nd𝑓))
4945, 47, 48syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ( 0 (2nd𝑓)) = (2nd𝑓))
5044, 49opeq12d 4830 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝐵) ∘ (1st𝑓)), ( 0 (2nd𝑓))⟩ = ⟨(1st𝑓), (2nd𝑓)⟩)
5139, 50eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨(1st𝑓), (2nd𝑓)⟩)
52 1st2nd2 7960 . . . . 5 (𝑓 ∈ (𝑇 × 𝐸) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
5352adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
5453oveq2d 7362 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ 𝑓) = (⟨( I ↾ 𝐵), 0+ ⟨(1st𝑓), (2nd𝑓)⟩))
5551, 54, 533eqtr4d 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨( I ↾ 𝐵), 0+ 𝑓) = 𝑓)
561, 2ltrncnv 40193 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑓) ∈ 𝑇) → (1st𝑓) ∈ 𝑇)
5735, 56syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (1st𝑓) ∈ 𝑇)
58 dvhgrp.i . . . . . 6 𝐼 = (invg𝐷)
5923, 58grpinvcl 18900 . . . . 5 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → (𝐼‘(2nd𝑓)) ∈ (Base‘𝐷))
6045, 47, 59syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐼‘(2nd𝑓)) ∈ (Base‘𝐷))
6160, 46eleqtrd 2833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (𝐼‘(2nd𝑓)) ∈ 𝐸)
62 opelxpi 5651 . . 3 (((1st𝑓) ∈ 𝑇 ∧ (𝐼‘(2nd𝑓)) ∈ 𝐸) → ⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ ∈ (𝑇 × 𝐸))
6357, 61, 62syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ ∈ (𝑇 × 𝐸))
6453oveq2d 7362 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + 𝑓) = (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩))
651, 2, 3, 4, 10, 8, 11dvhopvadd 41140 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((1st𝑓) ∈ 𝑇 ∧ (𝐼‘(2nd𝑓)) ∈ 𝐸) ∧ ((1st𝑓) ∈ 𝑇 ∧ (2nd𝑓) ∈ 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩)
6631, 57, 61, 35, 37, 65syl122anc 1381 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩)
67 f1ococnv1 6792 . . . . . 6 ((1st𝑓):𝐵1-1-onto𝐵 → ((1st𝑓) ∘ (1st𝑓)) = ( I ↾ 𝐵))
6841, 67syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ((1st𝑓) ∘ (1st𝑓)) = ( I ↾ 𝐵))
6923, 11, 24, 58grplinv 18902 . . . . . 6 ((𝐷 ∈ Grp ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((𝐼‘(2nd𝑓)) (2nd𝑓)) = 0 )
7045, 47, 69syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ((𝐼‘(2nd𝑓)) (2nd𝑓)) = 0 )
7168, 70opeq12d 4830 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → ⟨((1st𝑓) ∘ (1st𝑓)), ((𝐼‘(2nd𝑓)) (2nd𝑓))⟩ = ⟨( I ↾ 𝐵), 0 ⟩)
7266, 71eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + ⟨(1st𝑓), (2nd𝑓)⟩) = ⟨( I ↾ 𝐵), 0 ⟩)
7364, 72eqtrd 2766 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ (𝑇 × 𝐸)) → (⟨(1st𝑓), (𝐼‘(2nd𝑓))⟩ + 𝑓) = ⟨( I ↾ 𝐵), 0 ⟩)
747, 9, 13, 14, 30, 55, 63, 73isgrpd 18871 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579   I cid 5508   × cxp 5612  ccnv 5613  cres 5616  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  DivRingcdr 20644  HLchlt 39397  LHypclh 40031  LTrncltrn 40148  TEndoctendo 40799  EDRingcedring 40800  DVecHcdvh 41125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-llines 39545  df-lplanes 39546  df-lvols 39547  df-lines 39548  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-lhyp 40035  df-laut 40036  df-ldil 40151  df-ltrn 40152  df-trl 40206  df-tendo 40802  df-edring 40804  df-dvech 41126
This theorem is referenced by:  dvhlveclem  41155
  Copyright terms: Public domain W3C validator