Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Visualization version   GIF version

Theorem dvhvaddass 40435
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h 𝐻 = (LHyp‘𝐾)
dvhvaddcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvaddcl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvaddcl.d 𝐷 = (Scalar‘𝑈)
dvhvaddcl.p = (+g𝐷)
dvhvaddcl.a + = (+g𝑈)
Assertion
Ref Expression
dvhvaddass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 6264 . . . 4 (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼)))
2 dvhvaddcl.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dvhvaddcl.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dvhvaddcl.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 dvhvaddcl.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dvhvaddcl.d . . . . . . . . 9 𝐷 = (Scalar‘𝑈)
7 dvhvaddcl.a . . . . . . . . 9 + = (+g𝑈)
8 dvhvaddcl.p . . . . . . . . 9 = (+g𝐷)
92, 3, 4, 5, 6, 7, 8dvhvadd 40430 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1093adantr3 1170 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1110fveq2d 6895 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
12 fvex 6904 . . . . . . . 8 (1st𝐹) ∈ V
13 fvex 6904 . . . . . . . 8 (1st𝐺) ∈ V
1412, 13coex 7925 . . . . . . 7 ((1st𝐹) ∘ (1st𝐺)) ∈ V
15 ovex 7445 . . . . . . 7 ((2nd𝐹) (2nd𝐺)) ∈ V
1614, 15op1st 7987 . . . . . 6 (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((1st𝐹) ∘ (1st𝐺))
1711, 16eqtrdi 2787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = ((1st𝐹) ∘ (1st𝐺)))
1817coeq1d 5861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)))
192, 3, 4, 5, 6, 7, 8dvhvadd 40430 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
20193adantr1 1168 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
2120fveq2d 6895 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
22 fvex 6904 . . . . . . . 8 (1st𝐼) ∈ V
2313, 22coex 7925 . . . . . . 7 ((1st𝐺) ∘ (1st𝐼)) ∈ V
24 ovex 7445 . . . . . . 7 ((2nd𝐺) (2nd𝐼)) ∈ V
2523, 24op1st 7987 . . . . . 6 (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((1st𝐺) ∘ (1st𝐼))
2621, 25eqtrdi 2787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = ((1st𝐺) ∘ (1st𝐼)))
2726coeq2d 5862 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼))))
281, 18, 273eqtr4a 2797 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))))
29 xp2nd 8012 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
30 xp2nd 8012 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
31 xp2nd 8012 . . . . . 6 (𝐼 ∈ (𝑇 × 𝐸) → (2nd𝐼) ∈ 𝐸)
3229, 30, 313anim123i 1150 . . . . 5 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸)) → ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸))
33 eqid 2731 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
342, 33, 5, 6dvhsca 40420 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
352, 33erngdv 40331 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
3634, 35eqeltrd 2832 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
37 drnggrp 20593 . . . . . . . 8 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
3836, 37syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
3938adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → 𝐷 ∈ Grp)
40 simpr1 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ 𝐸)
41 eqid 2731 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
422, 4, 5, 6, 41dvhbase 40421 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
4342adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (Base‘𝐷) = 𝐸)
4440, 43eleqtrrd 2835 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ (Base‘𝐷))
45 simpr2 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ 𝐸)
4645, 43eleqtrrd 2835 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ (Base‘𝐷))
47 simpr3 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ 𝐸)
4847, 43eleqtrrd 2835 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ (Base‘𝐷))
4941, 8grpass 18870 . . . . . 6 ((𝐷 ∈ Grp ∧ ((2nd𝐹) ∈ (Base‘𝐷) ∧ (2nd𝐺) ∈ (Base‘𝐷) ∧ (2nd𝐼) ∈ (Base‘𝐷))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5039, 44, 46, 48, 49syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5132, 50sylan2 592 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5210fveq2d 6895 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
5314, 15op2nd 7988 . . . . . 6 (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((2nd𝐹) (2nd𝐺))
5452, 53eqtrdi 2787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = ((2nd𝐹) (2nd𝐺)))
5554oveq1d 7427 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = (((2nd𝐹) (2nd𝐺)) (2nd𝐼)))
5620fveq2d 6895 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
5723, 24op2nd 7988 . . . . . 6 (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((2nd𝐺) (2nd𝐼))
5856, 57eqtrdi 2787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = ((2nd𝐺) (2nd𝐼)))
5958oveq2d 7428 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
6051, 55, 593eqtr4d 2781 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))))
6128, 60opeq12d 4881 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩ = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
62 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
632, 3, 4, 5, 6, 8, 7dvhvaddcl 40433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
64633adantr3 1170 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
65 simpr3 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐼 ∈ (𝑇 × 𝐸))
662, 3, 4, 5, 6, 7, 8dvhvadd 40430 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹 + 𝐺) ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
6762, 64, 65, 66syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
68 simpr1 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐹 ∈ (𝑇 × 𝐸))
692, 3, 4, 5, 6, 8, 7dvhvaddcl 40433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
70693adantr1 1168 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
712, 3, 4, 5, 6, 7, 8dvhvadd 40430 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7262, 68, 70, 71syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7361, 67, 723eqtr4d 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cop 4634   × cxp 5674  ccom 5680  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  Basecbs 17151  +gcplusg 17204  Scalarcsca 17207  Grpcgrp 18861  DivRingcdr 20583  HLchlt 38687  LHypclh 39322  LTrncltrn 39439  TEndoctendo 40090  EDRingcedring 40091  DVecHcdvh 40416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-riotaBAD 38290
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-undef 8264  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-0g 17394  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-drng 20585  df-oposet 38513  df-ol 38515  df-oml 38516  df-covers 38603  df-ats 38604  df-atl 38635  df-cvlat 38659  df-hlat 38688  df-llines 38836  df-lplanes 38837  df-lvols 38838  df-lines 38839  df-psubsp 38841  df-pmap 38842  df-padd 39134  df-lhyp 39326  df-laut 39327  df-ldil 39442  df-ltrn 39443  df-trl 39497  df-tendo 40093  df-edring 40095  df-dvech 40417
This theorem is referenced by:  dvhgrp  40445
  Copyright terms: Public domain W3C validator