Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Visualization version   GIF version

Theorem dvhvaddass 39560
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h 𝐻 = (LHyp‘𝐾)
dvhvaddcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvaddcl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvaddcl.d 𝐷 = (Scalar‘𝑈)
dvhvaddcl.p = (+g𝐷)
dvhvaddcl.a + = (+g𝑈)
Assertion
Ref Expression
dvhvaddass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 6217 . . . 4 (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼)))
2 dvhvaddcl.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dvhvaddcl.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dvhvaddcl.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 dvhvaddcl.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dvhvaddcl.d . . . . . . . . 9 𝐷 = (Scalar‘𝑈)
7 dvhvaddcl.a . . . . . . . . 9 + = (+g𝑈)
8 dvhvaddcl.p . . . . . . . . 9 = (+g𝐷)
92, 3, 4, 5, 6, 7, 8dvhvadd 39555 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1093adantr3 1171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1110fveq2d 6846 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
12 fvex 6855 . . . . . . . 8 (1st𝐹) ∈ V
13 fvex 6855 . . . . . . . 8 (1st𝐺) ∈ V
1412, 13coex 7867 . . . . . . 7 ((1st𝐹) ∘ (1st𝐺)) ∈ V
15 ovex 7390 . . . . . . 7 ((2nd𝐹) (2nd𝐺)) ∈ V
1614, 15op1st 7929 . . . . . 6 (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((1st𝐹) ∘ (1st𝐺))
1711, 16eqtrdi 2792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = ((1st𝐹) ∘ (1st𝐺)))
1817coeq1d 5817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)))
192, 3, 4, 5, 6, 7, 8dvhvadd 39555 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
20193adantr1 1169 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
2120fveq2d 6846 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
22 fvex 6855 . . . . . . . 8 (1st𝐼) ∈ V
2313, 22coex 7867 . . . . . . 7 ((1st𝐺) ∘ (1st𝐼)) ∈ V
24 ovex 7390 . . . . . . 7 ((2nd𝐺) (2nd𝐼)) ∈ V
2523, 24op1st 7929 . . . . . 6 (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((1st𝐺) ∘ (1st𝐼))
2621, 25eqtrdi 2792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = ((1st𝐺) ∘ (1st𝐼)))
2726coeq2d 5818 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼))))
281, 18, 273eqtr4a 2802 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))))
29 xp2nd 7954 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
30 xp2nd 7954 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
31 xp2nd 7954 . . . . . 6 (𝐼 ∈ (𝑇 × 𝐸) → (2nd𝐼) ∈ 𝐸)
3229, 30, 313anim123i 1151 . . . . 5 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸)) → ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸))
33 eqid 2736 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
342, 33, 5, 6dvhsca 39545 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
352, 33erngdv 39456 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
3634, 35eqeltrd 2838 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
37 drnggrp 20195 . . . . . . . 8 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
3836, 37syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
3938adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → 𝐷 ∈ Grp)
40 simpr1 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ 𝐸)
41 eqid 2736 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
422, 4, 5, 6, 41dvhbase 39546 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
4342adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (Base‘𝐷) = 𝐸)
4440, 43eleqtrrd 2841 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ (Base‘𝐷))
45 simpr2 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ 𝐸)
4645, 43eleqtrrd 2841 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ (Base‘𝐷))
47 simpr3 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ 𝐸)
4847, 43eleqtrrd 2841 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ (Base‘𝐷))
4941, 8grpass 18757 . . . . . 6 ((𝐷 ∈ Grp ∧ ((2nd𝐹) ∈ (Base‘𝐷) ∧ (2nd𝐺) ∈ (Base‘𝐷) ∧ (2nd𝐼) ∈ (Base‘𝐷))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5039, 44, 46, 48, 49syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5132, 50sylan2 593 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5210fveq2d 6846 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
5314, 15op2nd 7930 . . . . . 6 (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((2nd𝐹) (2nd𝐺))
5452, 53eqtrdi 2792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = ((2nd𝐹) (2nd𝐺)))
5554oveq1d 7372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = (((2nd𝐹) (2nd𝐺)) (2nd𝐼)))
5620fveq2d 6846 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
5723, 24op2nd 7930 . . . . . 6 (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((2nd𝐺) (2nd𝐼))
5856, 57eqtrdi 2792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = ((2nd𝐺) (2nd𝐼)))
5958oveq2d 7373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
6051, 55, 593eqtr4d 2786 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))))
6128, 60opeq12d 4838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩ = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
62 simpl 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
632, 3, 4, 5, 6, 8, 7dvhvaddcl 39558 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
64633adantr3 1171 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
65 simpr3 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐼 ∈ (𝑇 × 𝐸))
662, 3, 4, 5, 6, 7, 8dvhvadd 39555 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹 + 𝐺) ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
6762, 64, 65, 66syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
68 simpr1 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐹 ∈ (𝑇 × 𝐸))
692, 3, 4, 5, 6, 8, 7dvhvaddcl 39558 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
70693adantr1 1169 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
712, 3, 4, 5, 6, 7, 8dvhvadd 39555 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7262, 68, 70, 71syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7361, 67, 723eqtr4d 2786 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4592   × cxp 5631  ccom 5637  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136  Grpcgrp 18748  DivRingcdr 20185  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  EDRingcedring 39216  DVecHcdvh 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-dvech 39542
This theorem is referenced by:  dvhgrp  39570
  Copyright terms: Public domain W3C validator