Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Visualization version   GIF version

Theorem dvhvaddass 39111
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h 𝐻 = (LHyp‘𝐾)
dvhvaddcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvaddcl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvaddcl.d 𝐷 = (Scalar‘𝑈)
dvhvaddcl.p = (+g𝐷)
dvhvaddcl.a + = (+g𝑈)
Assertion
Ref Expression
dvhvaddass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 6169 . . . 4 (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼)))
2 dvhvaddcl.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dvhvaddcl.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dvhvaddcl.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 dvhvaddcl.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 dvhvaddcl.d . . . . . . . . 9 𝐷 = (Scalar‘𝑈)
7 dvhvaddcl.a . . . . . . . . 9 + = (+g𝑈)
8 dvhvaddcl.p . . . . . . . . 9 = (+g𝐷)
92, 3, 4, 5, 6, 7, 8dvhvadd 39106 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1093adantr3 1170 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
1110fveq2d 6778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
12 fvex 6787 . . . . . . . 8 (1st𝐹) ∈ V
13 fvex 6787 . . . . . . . 8 (1st𝐺) ∈ V
1412, 13coex 7777 . . . . . . 7 ((1st𝐹) ∘ (1st𝐺)) ∈ V
15 ovex 7308 . . . . . . 7 ((2nd𝐹) (2nd𝐺)) ∈ V
1614, 15op1st 7839 . . . . . 6 (1st ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((1st𝐹) ∘ (1st𝐺))
1711, 16eqtrdi 2794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐹 + 𝐺)) = ((1st𝐹) ∘ (1st𝐺)))
1817coeq1d 5770 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = (((1st𝐹) ∘ (1st𝐺)) ∘ (1st𝐼)))
192, 3, 4, 5, 6, 7, 8dvhvadd 39106 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
20193adantr1 1168 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) = ⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩)
2120fveq2d 6778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
22 fvex 6787 . . . . . . . 8 (1st𝐼) ∈ V
2313, 22coex 7777 . . . . . . 7 ((1st𝐺) ∘ (1st𝐼)) ∈ V
24 ovex 7308 . . . . . . 7 ((2nd𝐺) (2nd𝐼)) ∈ V
2523, 24op1st 7839 . . . . . 6 (1st ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((1st𝐺) ∘ (1st𝐼))
2621, 25eqtrdi 2794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (1st ‘(𝐺 + 𝐼)) = ((1st𝐺) ∘ (1st𝐼)))
2726coeq2d 5771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))) = ((1st𝐹) ∘ ((1st𝐺) ∘ (1st𝐼))))
281, 18, 273eqtr4a 2804 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)) = ((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))))
29 xp2nd 7864 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
30 xp2nd 7864 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
31 xp2nd 7864 . . . . . 6 (𝐼 ∈ (𝑇 × 𝐸) → (2nd𝐼) ∈ 𝐸)
3229, 30, 313anim123i 1150 . . . . 5 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸)) → ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸))
33 eqid 2738 . . . . . . . . . 10 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
342, 33, 5, 6dvhsca 39096 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
352, 33erngdv 39007 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
3634, 35eqeltrd 2839 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
37 drnggrp 19999 . . . . . . . 8 (𝐷 ∈ DivRing → 𝐷 ∈ Grp)
3836, 37syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
3938adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → 𝐷 ∈ Grp)
40 simpr1 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ 𝐸)
41 eqid 2738 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
422, 4, 5, 6, 41dvhbase 39097 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
4342adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (Base‘𝐷) = 𝐸)
4440, 43eleqtrrd 2842 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐹) ∈ (Base‘𝐷))
45 simpr2 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ 𝐸)
4645, 43eleqtrrd 2842 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐺) ∈ (Base‘𝐷))
47 simpr3 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ 𝐸)
4847, 43eleqtrrd 2842 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (2nd𝐼) ∈ (Base‘𝐷))
4941, 8grpass 18586 . . . . . 6 ((𝐷 ∈ Grp ∧ ((2nd𝐹) ∈ (Base‘𝐷) ∧ (2nd𝐺) ∈ (Base‘𝐷) ∧ (2nd𝐼) ∈ (Base‘𝐷))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5039, 44, 46, 48, 49syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸 ∧ (2nd𝐼) ∈ 𝐸)) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5132, 50sylan2 593 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (((2nd𝐹) (2nd𝐺)) (2nd𝐼)) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
5210fveq2d 6778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩))
5314, 15op2nd 7840 . . . . . 6 (2nd ‘⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩) = ((2nd𝐹) (2nd𝐺))
5452, 53eqtrdi 2794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐹 + 𝐺)) = ((2nd𝐹) (2nd𝐺)))
5554oveq1d 7290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = (((2nd𝐹) (2nd𝐺)) (2nd𝐼)))
5620fveq2d 6778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩))
5723, 24op2nd 7840 . . . . . 6 (2nd ‘⟨((1st𝐺) ∘ (1st𝐼)), ((2nd𝐺) (2nd𝐼))⟩) = ((2nd𝐺) (2nd𝐼))
5856, 57eqtrdi 2794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝐺 + 𝐼)) = ((2nd𝐺) (2nd𝐼)))
5958oveq2d 7291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))) = ((2nd𝐹) ((2nd𝐺) (2nd𝐼))))
6051, 55, 593eqtr4d 2788 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼)) = ((2nd𝐹) (2nd ‘(𝐺 + 𝐼))))
6128, 60opeq12d 4812 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩ = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
62 simpl 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
632, 3, 4, 5, 6, 8, 7dvhvaddcl 39109 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
64633adantr3 1170 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
65 simpr3 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐼 ∈ (𝑇 × 𝐸))
662, 3, 4, 5, 6, 7, 8dvhvadd 39106 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹 + 𝐺) ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
6762, 64, 65, 66syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = ⟨((1st ‘(𝐹 + 𝐺)) ∘ (1st𝐼)), ((2nd ‘(𝐹 + 𝐺)) (2nd𝐼))⟩)
68 simpr1 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → 𝐹 ∈ (𝑇 × 𝐸))
692, 3, 4, 5, 6, 8, 7dvhvaddcl 39109 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
70693adantr1 1168 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))
712, 3, 4, 5, 6, 7, 8dvhvadd 39106 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ (𝐺 + 𝐼) ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7262, 68, 70, 71syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → (𝐹 + (𝐺 + 𝐼)) = ⟨((1st𝐹) ∘ (1st ‘(𝐺 + 𝐼))), ((2nd𝐹) (2nd ‘(𝐺 + 𝐼)))⟩)
7361, 67, 723eqtr4d 2788 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐼 ∈ (𝑇 × 𝐸))) → ((𝐹 + 𝐺) + 𝐼) = (𝐹 + (𝐺 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cop 4567   × cxp 5587  ccom 5593  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  Grpcgrp 18577  DivRingcdr 19991  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766  EDRingcedring 38767  DVecHcdvh 39092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769  df-edring 38771  df-dvech 39093
This theorem is referenced by:  dvhgrp  39121
  Copyright terms: Public domain W3C validator