Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4 Structured version   Visualization version   GIF version

Theorem cdlemn4 40006
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
cdlemn4.b 𝐵 = (Base‘𝐾)
cdlemn4.l = (le‘𝐾)
cdlemn4.a 𝐴 = (Atoms‘𝐾)
cdlemn4.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn4.h 𝐻 = (LHyp‘𝐾)
cdlemn4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn4.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn4.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn4.j 𝐽 = (𝑇 (𝑄) = 𝑅)
cdlemn4.s + = (+g𝑈)
Assertion
Ref Expression
cdlemn4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   + ()   𝑈()   𝐹()   𝐺()   𝐽()   𝑂()

Proof of Theorem cdlemn4
StepHypRef Expression
1 simp1 1137 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemn4.l . . . . . 6 = (le‘𝐾)
3 cdlemn4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 cdlemn4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemn4.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 38827 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 cdlemn4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemn4.f . . . . 5 𝐹 = (𝑇 (𝑃) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 39387 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
121, 7, 8, 11syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
13 eqid 2733 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
144, 9, 13tendoidcl 39577 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
151, 14syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
16 cdlemn4.j . . . 4 𝐽 = (𝑇 (𝑄) = 𝑅)
172, 3, 4, 9, 16ltrniotacl 39387 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
18 cdlemn4.b . . . . 5 𝐵 = (Base‘𝐾)
19 cdlemn4.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
2018, 4, 9, 13, 19tendo0cl 39598 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
211, 20syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
22 cdlemn4.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
23 eqid 2733 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
24 cdlemn4.s . . . 4 + = (+g𝑈)
25 eqid 2733 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
264, 9, 13, 22, 23, 24, 25dvhopvadd 39901 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝐽𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩) = ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩)
271, 12, 15, 17, 21, 26syl122anc 1380 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩) = ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩)
284, 9ltrncom 39546 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐽𝑇) → (𝐹𝐽) = (𝐽𝐹))
291, 12, 17, 28syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝐽) = (𝐽𝐹))
30 cdlemn4.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
312, 3, 5, 4, 9, 10, 30, 16cdlemn3 40005 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
3229, 31eqtrd 2773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝐽) = 𝐺)
33 eqid 2733 . . . . . . . . 9 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
344, 33, 22, 23dvhsca 39890 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Scalar‘𝑈) = ((EDRing‘𝐾)‘𝑊))
3534fveq2d 6891 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘(Scalar‘𝑈)) = (0g‘((EDRing‘𝐾)‘𝑊)))
36 eqid 2733 . . . . . . . 8 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3718, 4, 9, 33, 19, 36erng0g 39802 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = 𝑂)
3835, 37eqtrd 2773 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘(Scalar‘𝑈)) = 𝑂)
391, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (0g‘(Scalar‘𝑈)) = 𝑂)
4039oveq2d 7419 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂))
414, 33erngdv 39801 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
42 drnggrp 20313 . . . . . . . 8 (((EDRing‘𝐾)‘𝑊) ∈ DivRing → ((EDRing‘𝐾)‘𝑊) ∈ Grp)
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ Grp)
4434, 43eqeltrd 2834 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Scalar‘𝑈) ∈ Grp)
451, 44syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (Scalar‘𝑈) ∈ Grp)
46 eqid 2733 . . . . . . . 8 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
474, 13, 22, 23, 46dvhbase 39891 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
481, 47syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4915, 48eleqtrrd 2837 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ (Base‘(Scalar‘𝑈)))
50 eqid 2733 . . . . . 6 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
5146, 25, 50grprid 18848 . . . . 5 (((Scalar‘𝑈) ∈ Grp ∧ ( I ↾ 𝑇) ∈ (Base‘(Scalar‘𝑈))) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = ( I ↾ 𝑇))
5245, 49, 51syl2anc 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = ( I ↾ 𝑇))
5340, 52eqtr3d 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂) = ( I ↾ 𝑇))
5432, 53opeq12d 4879 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩ = ⟨𝐺, ( I ↾ 𝑇)⟩)
5527, 54eqtr2d 2774 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cop 4632   class class class wbr 5146  cmpt 5229   I cid 5571  cres 5676  ccom 5678  cfv 6539  crio 7358  (class class class)co 7403  Basecbs 17139  +gcplusg 17192  Scalarcsca 17195  lecple 17199  occoc 17200  0gc0g 17380  Grpcgrp 18814  DivRingcdr 20303  Atomscatm 38070  HLchlt 38157  LHypclh 38792  LTrncltrn 38909  TEndoctendo 39560  EDRingcedring 39561  DVecHcdvh 39886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-riotaBAD 37760
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-n0 12468  df-z 12554  df-uz 12818  df-fz 13480  df-struct 17075  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-sca 17208  df-vsca 17209  df-0g 17382  df-proset 18243  df-poset 18261  df-plt 18278  df-lub 18294  df-glb 18295  df-join 18296  df-meet 18297  df-p0 18373  df-p1 18374  df-lat 18380  df-clat 18447  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-grp 18817  df-minusg 18818  df-mgp 19979  df-ur 19996  df-ring 20048  df-oppr 20138  df-dvdsr 20159  df-unit 20160  df-invr 20190  df-dvr 20203  df-drng 20305  df-oposet 37983  df-ol 37985  df-oml 37986  df-covers 38073  df-ats 38074  df-atl 38105  df-cvlat 38129  df-hlat 38158  df-llines 38306  df-lplanes 38307  df-lvols 38308  df-lines 38309  df-psubsp 38311  df-pmap 38312  df-padd 38604  df-lhyp 38796  df-laut 38797  df-ldil 38912  df-ltrn 38913  df-trl 38967  df-tendo 39563  df-edring 39565  df-dvech 39887
This theorem is referenced by:  cdlemn4a  40007
  Copyright terms: Public domain W3C validator