Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn4 Structured version   Visualization version   GIF version

Theorem cdlemn4 38370
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
cdlemn4.b 𝐵 = (Base‘𝐾)
cdlemn4.l = (le‘𝐾)
cdlemn4.a 𝐴 = (Atoms‘𝐾)
cdlemn4.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn4.h 𝐻 = (LHyp‘𝐾)
cdlemn4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
cdlemn4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
cdlemn4.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn4.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn4.j 𝐽 = (𝑇 (𝑄) = 𝑅)
cdlemn4.s + = (+g𝑈)
Assertion
Ref Expression
cdlemn4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩))
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   + ()   𝑈()   𝐹()   𝐺()   𝐽()   𝑂()

Proof of Theorem cdlemn4
StepHypRef Expression
1 simp1 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemn4.l . . . . . 6 = (le‘𝐾)
3 cdlemn4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
4 cdlemn4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemn4.p . . . . . 6 𝑃 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 37191 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71, 6syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 cdlemn4.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemn4.f . . . . 5 𝐹 = (𝑇 (𝑃) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 37751 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
121, 7, 8, 11syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
13 eqid 2820 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
144, 9, 13tendoidcl 37941 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
151, 14syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
16 cdlemn4.j . . . 4 𝐽 = (𝑇 (𝑄) = 𝑅)
172, 3, 4, 9, 16ltrniotacl 37751 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
18 cdlemn4.b . . . . 5 𝐵 = (Base‘𝐾)
19 cdlemn4.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
2018, 4, 9, 13, 19tendo0cl 37962 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
211, 20syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
22 cdlemn4.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
23 eqid 2820 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
24 cdlemn4.s . . . 4 + = (+g𝑈)
25 eqid 2820 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
264, 9, 13, 22, 23, 24, 25dvhopvadd 38265 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝐽𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩) = ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩)
271, 12, 15, 17, 21, 26syl122anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩) = ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩)
284, 9ltrncom 37910 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐽𝑇) → (𝐹𝐽) = (𝐽𝐹))
291, 12, 17, 28syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝐽) = (𝐽𝐹))
30 cdlemn4.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
312, 3, 5, 4, 9, 10, 30, 16cdlemn3 38369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
3229, 31eqtrd 2855 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝐽) = 𝐺)
33 eqid 2820 . . . . . . . . 9 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
344, 33, 22, 23dvhsca 38254 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Scalar‘𝑈) = ((EDRing‘𝐾)‘𝑊))
3534fveq2d 6650 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘(Scalar‘𝑈)) = (0g‘((EDRing‘𝐾)‘𝑊)))
36 eqid 2820 . . . . . . . 8 (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊))
3718, 4, 9, 33, 19, 36erng0g 38166 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = 𝑂)
3835, 37eqtrd 2855 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g‘(Scalar‘𝑈)) = 𝑂)
391, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (0g‘(Scalar‘𝑈)) = 𝑂)
4039oveq2d 7149 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂))
414, 33erngdv 38165 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
42 drnggrp 19486 . . . . . . . 8 (((EDRing‘𝐾)‘𝑊) ∈ DivRing → ((EDRing‘𝐾)‘𝑊) ∈ Grp)
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ Grp)
4434, 43eqeltrd 2911 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Scalar‘𝑈) ∈ Grp)
451, 44syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (Scalar‘𝑈) ∈ Grp)
46 eqid 2820 . . . . . . . 8 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
474, 13, 22, 23, 46dvhbase 38255 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
481, 47syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4915, 48eleqtrrd 2914 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ( I ↾ 𝑇) ∈ (Base‘(Scalar‘𝑈)))
50 eqid 2820 . . . . . 6 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
5146, 25, 50grprid 18113 . . . . 5 (((Scalar‘𝑈) ∈ Grp ∧ ( I ↾ 𝑇) ∈ (Base‘(Scalar‘𝑈))) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = ( I ↾ 𝑇))
5245, 49, 51syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))(0g‘(Scalar‘𝑈))) = ( I ↾ 𝑇))
5340, 52eqtr3d 2857 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂) = ( I ↾ 𝑇))
5432, 53opeq12d 4787 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨(𝐹𝐽), (( I ↾ 𝑇)(+g‘(Scalar‘𝑈))𝑂)⟩ = ⟨𝐺, ( I ↾ 𝑇)⟩)
5527, 54eqtr2d 2856 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ⟨𝐺, ( I ↾ 𝑇)⟩ = (⟨𝐹, ( I ↾ 𝑇)⟩ +𝐽, 𝑂⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cop 4549   class class class wbr 5042  cmpt 5122   I cid 5435  cres 5533  ccom 5535  cfv 6331  crio 7090  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  Scalarcsca 16547  lecple 16551  occoc 16552  0gc0g 16692  Grpcgrp 18082  DivRingcdr 19478  Atomscatm 36435  HLchlt 36522  LHypclh 37156  LTrncltrn 37273  TEndoctendo 37924  EDRingcedring 37925  DVecHcdvh 38250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-riotaBAD 36125
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-tpos 7870  df-undef 7917  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-0g 16694  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-mgp 19219  df-ur 19231  df-ring 19278  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523  df-llines 36670  df-lplanes 36671  df-lvols 36672  df-lines 36673  df-psubsp 36675  df-pmap 36676  df-padd 36968  df-lhyp 37160  df-laut 37161  df-ldil 37276  df-ltrn 37277  df-trl 37331  df-tendo 37927  df-edring 37929  df-dvech 38251
This theorem is referenced by:  cdlemn4a  38371
  Copyright terms: Public domain W3C validator