Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmf1 Structured version   Visualization version   GIF version

Theorem fldhmf1 42085
Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
fldhmf1.1 (𝜑𝐾 ∈ Field)
fldhmf1.2 (𝜑𝐿 ∈ Field)
fldhmf1.3 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
fldhmf1.4 𝐴 = (Base‘𝐾)
fldhmf1.5 𝐵 = (Base‘𝐿)
Assertion
Ref Expression
fldhmf1 (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem fldhmf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldhmf1.3 . . . 4 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
2 fldhmf1.4 . . . . 5 𝐴 = (Base‘𝐾)
3 fldhmf1.5 . . . . 5 𝐵 = (Base‘𝐿)
42, 3rhmf 20401 . . . 4 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴𝐵)
51, 4syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
61ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿))
7 rhmghm 20400 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
86, 7syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
9 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
10 fldhmf1.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
11 isfld 20656 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1210, 11sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1312simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
1413ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ DivRing)
15 drnggrp 20655 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ Grp)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Grp)
17 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
18 eqid 2730 . . . . . . . . . . . . . . . 16 (invg𝐾) = (invg𝐾)
192, 18grpinvcl 18926 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘𝑏) ∈ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘𝑏) ∈ 𝐴)
21 eqid 2730 . . . . . . . . . . . . . . 15 (+g𝐾) = (+g𝐾)
22 eqid 2730 . . . . . . . . . . . . . . 15 (+g𝐿) = (+g𝐿)
232, 21, 22ghmlin 19160 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
248, 9, 20, 23syl3anc 1373 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
25 eqid 2730 . . . . . . . . . . . . . . . . 17 (invg𝐿) = (invg𝐿)
262, 18, 25ghminv 19162 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏𝐴) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
278, 17, 26syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
2827oveq2d 7406 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
3029oveq1d 7405 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
31 fldhmf1.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐿 ∈ Field)
3231ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ Field)
33 isfld 20656 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3432, 33sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3534simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ DivRing)
3635adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ DivRing)
37 drngring 20652 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → 𝐿 ∈ Ring)
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Ring)
3938ringgrpd 20158 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Grp)
406, 4syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴𝐵)
4140, 17ffvelcdmd 7060 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) ∈ 𝐵)
42 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g𝐿) = (0g𝐿)
433, 22, 42, 25grprinv 18929 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ Grp ∧ (𝐹𝑏) ∈ 𝐵) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4439, 41, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4530, 44eqtrd 2765 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4628, 45eqtrd 2765 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = (0g𝐿))
4724, 46eqtrd 2765 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = (0g𝐿))
4847oveq1d 7405 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
492, 21grpcl 18880 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
5016, 9, 20, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
512, 18grpinvinv 18944 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
5216, 17, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝑏)
5453necomd 2981 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝑎)
5552, 54eqnetrd 2993 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎)
56 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐾) = (0g𝐾)
572, 21, 56, 18grpinvid2 18931 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) = (0g𝐾)))
5857necon3bid 2970 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
5916, 20, 9, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
6055, 59mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))
6150, 60jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
62 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐾) = (Unit‘𝐾)
632, 62, 56drngunit 20650 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ DivRing → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6414, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6561, 64mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾))
66 rhmunitinv 20427 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
676, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
68 elrhmunit 20426 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
696, 65, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
70 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐿) = (Unit‘𝐿)
71 eqid 2730 . . . . . . . . . . . . . . . . . 18 (invr𝐿) = (invr𝐿)
7270, 71unitinvcl 20306 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
7338, 69, 72syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
743, 70, 42drngunit 20650 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7536, 74syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7675biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7773, 76mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿)))
7877simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
7967, 78eqeltrd 2829 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
8038, 79jca 511 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵))
81 eqid 2730 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
823, 81, 42ringlz 20209 . . . . . . . . . . . 12 ((𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8380, 82syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8448, 83eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8584eqcomd 2736 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
8612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ CRing)
8786crngringd 20162 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Ring)
8887ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
89 eqid 2730 . . . . . . . . . . . . . 14 (invr𝐾) = (invr𝐾)
9062, 89unitinvcl 20306 . . . . . . . . . . . . 13 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
9188, 65, 90syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
92 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
9392, 62unitcl 20291 . . . . . . . . . . . . 13 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Base‘𝐾))
942eqcomi 2739 . . . . . . . . . . . . 13 (Base‘𝐾) = 𝐴
9593, 94eleqtrdi 2839 . . . . . . . . . . . 12 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
9691, 95syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
97 eqid 2730 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
982, 97, 81rhmmul 20402 . . . . . . . . . . 11 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
996, 50, 96, 98syl3anc 1373 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
10099eqcomd 2736 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
101 drngring 20652 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
10214, 101syl 17 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
103 eqid 2730 . . . . . . . . . . . . 13 (1r𝐾) = (1r𝐾)
10462, 89, 97, 103unitrinv 20310 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
105102, 65, 104syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
106105fveq2d 6865 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘(1r𝐾)))
107 eqid 2730 . . . . . . . . . . . 12 (1r𝐿) = (1r𝐿)
108103, 107rhm1 20405 . . . . . . . . . . 11 (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r𝐾)) = (1r𝐿))
1096, 108syl 17 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(1r𝐾)) = (1r𝐿))
110106, 109eqtrd 2765 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (1r𝐿))
11185, 100, 1103eqtrd 2769 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = (1r𝐿))
11242, 107drngunz 20663 . . . . . . . . . . . 12 (𝐿 ∈ DivRing → (1r𝐿) ≠ (0g𝐿))
11335, 112syl 17 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (1r𝐿) ≠ (0g𝐿))
114113necomd 2981 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (0g𝐿) ≠ (1r𝐿))
115114adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) ≠ (1r𝐿))
116115neneqd 2931 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ (0g𝐿) = (1r𝐿))
117111, 116pm2.65da 816 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → ¬ (𝐹𝑎) = (𝐹𝑏))
118117neqned 2933 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐹𝑎) ≠ (𝐹𝑏))
119118ex 412 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑏𝐴) → (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
120119ralrimiva 3126 . . . 4 ((𝜑𝑎𝐴) → ∀𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
121120ralrimiva 3126 . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
1225, 121jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
123 dff14a 7248 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
124122, 123sylibr 234 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873   GrpHom cghm 19151  1rcur 20097  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  invrcinvr 20303   RingHom crh 20385  DivRingcdr 20645  Fieldcfield 20646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-drng 20647  df-field 20648
This theorem is referenced by:  aks5lem7  42195
  Copyright terms: Public domain W3C validator