Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmf1 Structured version   Visualization version   GIF version

Theorem fldhmf1 42092
Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
fldhmf1.1 (𝜑𝐾 ∈ Field)
fldhmf1.2 (𝜑𝐿 ∈ Field)
fldhmf1.3 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
fldhmf1.4 𝐴 = (Base‘𝐾)
fldhmf1.5 𝐵 = (Base‘𝐿)
Assertion
Ref Expression
fldhmf1 (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem fldhmf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldhmf1.3 . . . 4 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
2 fldhmf1.4 . . . . 5 𝐴 = (Base‘𝐾)
3 fldhmf1.5 . . . . 5 𝐵 = (Base‘𝐿)
42, 3rhmf 20486 . . . 4 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴𝐵)
51, 4syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
61ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿))
7 rhmghm 20485 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
86, 7syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
9 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
10 fldhmf1.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
11 isfld 20741 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1210, 11sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1312simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
1413ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ DivRing)
15 drnggrp 20740 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ Grp)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Grp)
17 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
18 eqid 2736 . . . . . . . . . . . . . . . 16 (invg𝐾) = (invg𝐾)
192, 18grpinvcl 19006 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘𝑏) ∈ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘𝑏) ∈ 𝐴)
21 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝐾) = (+g𝐾)
22 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝐿) = (+g𝐿)
232, 21, 22ghmlin 19240 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
248, 9, 20, 23syl3anc 1372 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
25 eqid 2736 . . . . . . . . . . . . . . . . 17 (invg𝐿) = (invg𝐿)
262, 18, 25ghminv 19242 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏𝐴) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
278, 17, 26syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
2827oveq2d 7448 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
3029oveq1d 7447 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
31 fldhmf1.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐿 ∈ Field)
3231ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ Field)
33 isfld 20741 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3432, 33sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3534simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ DivRing)
3635adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ DivRing)
37 drngring 20737 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → 𝐿 ∈ Ring)
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Ring)
3938ringgrpd 20240 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Grp)
406, 4syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴𝐵)
4140, 17ffvelcdmd 7104 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) ∈ 𝐵)
42 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g𝐿) = (0g𝐿)
433, 22, 42, 25grprinv 19009 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ Grp ∧ (𝐹𝑏) ∈ 𝐵) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4439, 41, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4530, 44eqtrd 2776 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4628, 45eqtrd 2776 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = (0g𝐿))
4724, 46eqtrd 2776 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = (0g𝐿))
4847oveq1d 7447 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
492, 21grpcl 18960 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
5016, 9, 20, 49syl3anc 1372 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
512, 18grpinvinv 19024 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
5216, 17, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝑏)
5453necomd 2995 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝑎)
5552, 54eqnetrd 3007 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎)
56 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐾) = (0g𝐾)
572, 21, 56, 18grpinvid2 19011 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) = (0g𝐾)))
5857necon3bid 2984 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
5916, 20, 9, 58syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
6055, 59mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))
6150, 60jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
62 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐾) = (Unit‘𝐾)
632, 62, 56drngunit 20735 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ DivRing → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6414, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6561, 64mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾))
66 rhmunitinv 20512 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
676, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
68 elrhmunit 20511 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
696, 65, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
70 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐿) = (Unit‘𝐿)
71 eqid 2736 . . . . . . . . . . . . . . . . . 18 (invr𝐿) = (invr𝐿)
7270, 71unitinvcl 20391 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
7338, 69, 72syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
743, 70, 42drngunit 20735 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7536, 74syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7675biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7773, 76mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿)))
7877simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
7967, 78eqeltrd 2840 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
8038, 79jca 511 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵))
81 eqid 2736 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
823, 81, 42ringlz 20291 . . . . . . . . . . . 12 ((𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8380, 82syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8448, 83eqtrd 2776 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8584eqcomd 2742 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
8612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ CRing)
8786crngringd 20244 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Ring)
8887ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
89 eqid 2736 . . . . . . . . . . . . . 14 (invr𝐾) = (invr𝐾)
9062, 89unitinvcl 20391 . . . . . . . . . . . . 13 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
9188, 65, 90syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
92 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
9392, 62unitcl 20376 . . . . . . . . . . . . 13 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Base‘𝐾))
942eqcomi 2745 . . . . . . . . . . . . 13 (Base‘𝐾) = 𝐴
9593, 94eleqtrdi 2850 . . . . . . . . . . . 12 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
9691, 95syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
97 eqid 2736 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
982, 97, 81rhmmul 20487 . . . . . . . . . . 11 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
996, 50, 96, 98syl3anc 1372 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
10099eqcomd 2742 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
101 drngring 20737 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
10214, 101syl 17 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
103 eqid 2736 . . . . . . . . . . . . 13 (1r𝐾) = (1r𝐾)
10462, 89, 97, 103unitrinv 20395 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
105102, 65, 104syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
106105fveq2d 6909 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘(1r𝐾)))
107 eqid 2736 . . . . . . . . . . . 12 (1r𝐿) = (1r𝐿)
108103, 107rhm1 20490 . . . . . . . . . . 11 (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r𝐾)) = (1r𝐿))
1096, 108syl 17 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(1r𝐾)) = (1r𝐿))
110106, 109eqtrd 2776 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (1r𝐿))
11185, 100, 1103eqtrd 2780 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = (1r𝐿))
11242, 107drngunz 20748 . . . . . . . . . . . 12 (𝐿 ∈ DivRing → (1r𝐿) ≠ (0g𝐿))
11335, 112syl 17 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (1r𝐿) ≠ (0g𝐿))
114113necomd 2995 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (0g𝐿) ≠ (1r𝐿))
115114adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) ≠ (1r𝐿))
116115neneqd 2944 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ (0g𝐿) = (1r𝐿))
117111, 116pm2.65da 816 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → ¬ (𝐹𝑎) = (𝐹𝑏))
118117neqned 2946 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐹𝑎) ≠ (𝐹𝑏))
119118ex 412 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑏𝐴) → (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
120119ralrimiva 3145 . . . 4 ((𝜑𝑎𝐴) → ∀𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
121120ralrimiva 3145 . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
1225, 121jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
123 dff14a 7291 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
124122, 123sylibr 234 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wf 6556  1-1wf1 6557  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485  Grpcgrp 18952  invgcminusg 18953   GrpHom cghm 19231  1rcur 20179  Ringcrg 20231  CRingccrg 20232  Unitcui 20356  invrcinvr 20388   RingHom crh 20470  DivRingcdr 20730  Fieldcfield 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-rhm 20473  df-drng 20732  df-field 20733
This theorem is referenced by:  aks5lem7  42202
  Copyright terms: Public domain W3C validator