Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmf1 Structured version   Visualization version   GIF version

Theorem fldhmf1 42047
Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
fldhmf1.1 (𝜑𝐾 ∈ Field)
fldhmf1.2 (𝜑𝐿 ∈ Field)
fldhmf1.3 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
fldhmf1.4 𝐴 = (Base‘𝐾)
fldhmf1.5 𝐵 = (Base‘𝐿)
Assertion
Ref Expression
fldhmf1 (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem fldhmf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldhmf1.3 . . . 4 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
2 fldhmf1.4 . . . . 5 𝐴 = (Base‘𝐾)
3 fldhmf1.5 . . . . 5 𝐵 = (Base‘𝐿)
42, 3rhmf 20511 . . . 4 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴𝐵)
51, 4syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
61ad4antr 731 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿))
7 rhmghm 20510 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
86, 7syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
9 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
10 fldhmf1.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
11 isfld 20762 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1210, 11sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1312simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
1413ad4antr 731 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ DivRing)
15 drnggrp 20761 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ Grp)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Grp)
17 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
18 eqid 2740 . . . . . . . . . . . . . . . 16 (invg𝐾) = (invg𝐾)
192, 18grpinvcl 19027 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘𝑏) ∈ 𝐴)
2016, 17, 19syl2anc 583 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘𝑏) ∈ 𝐴)
21 eqid 2740 . . . . . . . . . . . . . . 15 (+g𝐾) = (+g𝐾)
22 eqid 2740 . . . . . . . . . . . . . . 15 (+g𝐿) = (+g𝐿)
232, 21, 22ghmlin 19261 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
248, 9, 20, 23syl3anc 1371 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
25 eqid 2740 . . . . . . . . . . . . . . . . 17 (invg𝐿) = (invg𝐿)
262, 18, 25ghminv 19263 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏𝐴) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
278, 17, 26syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
2827oveq2d 7464 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
3029oveq1d 7463 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
31 fldhmf1.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐿 ∈ Field)
3231ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ Field)
33 isfld 20762 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3432, 33sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3534simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ DivRing)
3635adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ DivRing)
37 drngring 20758 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → 𝐿 ∈ Ring)
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Ring)
3938ringgrpd 20269 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Grp)
406, 4syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴𝐵)
4140, 17ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) ∈ 𝐵)
42 eqid 2740 . . . . . . . . . . . . . . . . 17 (0g𝐿) = (0g𝐿)
433, 22, 42, 25grprinv 19030 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ Grp ∧ (𝐹𝑏) ∈ 𝐵) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4439, 41, 43syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4530, 44eqtrd 2780 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4628, 45eqtrd 2780 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = (0g𝐿))
4724, 46eqtrd 2780 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = (0g𝐿))
4847oveq1d 7463 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
492, 21grpcl 18981 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
5016, 9, 20, 49syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
512, 18grpinvinv 19045 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
5216, 17, 51syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝑏)
5453necomd 3002 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝑎)
5552, 54eqnetrd 3014 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎)
56 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐾) = (0g𝐾)
572, 21, 56, 18grpinvid2 19032 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) = (0g𝐾)))
5857necon3bid 2991 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
5916, 20, 9, 58syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
6055, 59mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))
6150, 60jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
62 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐾) = (Unit‘𝐾)
632, 62, 56drngunit 20756 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ DivRing → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6414, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6561, 64mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾))
66 rhmunitinv 20537 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
676, 65, 66syl2anc 583 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
68 elrhmunit 20536 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
696, 65, 68syl2anc 583 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
70 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐿) = (Unit‘𝐿)
71 eqid 2740 . . . . . . . . . . . . . . . . . 18 (invr𝐿) = (invr𝐿)
7270, 71unitinvcl 20416 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
7338, 69, 72syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
743, 70, 42drngunit 20756 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7536, 74syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7675biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7773, 76mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿)))
7877simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
7967, 78eqeltrd 2844 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
8038, 79jca 511 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵))
81 eqid 2740 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
823, 81, 42ringlz 20316 . . . . . . . . . . . 12 ((𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8380, 82syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8448, 83eqtrd 2780 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8584eqcomd 2746 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
8612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ CRing)
8786crngringd 20273 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Ring)
8887ad4antr 731 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
89 eqid 2740 . . . . . . . . . . . . . 14 (invr𝐾) = (invr𝐾)
9062, 89unitinvcl 20416 . . . . . . . . . . . . 13 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
9188, 65, 90syl2anc 583 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
92 eqid 2740 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
9392, 62unitcl 20401 . . . . . . . . . . . . 13 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Base‘𝐾))
942eqcomi 2749 . . . . . . . . . . . . 13 (Base‘𝐾) = 𝐴
9593, 94eleqtrdi 2854 . . . . . . . . . . . 12 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
9691, 95syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
97 eqid 2740 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
982, 97, 81rhmmul 20512 . . . . . . . . . . 11 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
996, 50, 96, 98syl3anc 1371 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
10099eqcomd 2746 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
101 drngring 20758 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
10214, 101syl 17 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
103 eqid 2740 . . . . . . . . . . . . 13 (1r𝐾) = (1r𝐾)
10462, 89, 97, 103unitrinv 20420 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
105102, 65, 104syl2anc 583 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
106105fveq2d 6924 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘(1r𝐾)))
107 eqid 2740 . . . . . . . . . . . 12 (1r𝐿) = (1r𝐿)
108103, 107rhm1 20515 . . . . . . . . . . 11 (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r𝐾)) = (1r𝐿))
1096, 108syl 17 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(1r𝐾)) = (1r𝐿))
110106, 109eqtrd 2780 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (1r𝐿))
11185, 100, 1103eqtrd 2784 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = (1r𝐿))
11242, 107drngunz 20769 . . . . . . . . . . . 12 (𝐿 ∈ DivRing → (1r𝐿) ≠ (0g𝐿))
11335, 112syl 17 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (1r𝐿) ≠ (0g𝐿))
114113necomd 3002 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (0g𝐿) ≠ (1r𝐿))
115114adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) ≠ (1r𝐿))
116115neneqd 2951 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ (0g𝐿) = (1r𝐿))
117111, 116pm2.65da 816 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → ¬ (𝐹𝑎) = (𝐹𝑏))
118117neqned 2953 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐹𝑎) ≠ (𝐹𝑏))
119118ex 412 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑏𝐴) → (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
120119ralrimiva 3152 . . . 4 ((𝜑𝑎𝐴) → ∀𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
121120ralrimiva 3152 . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
1225, 121jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
123 dff14a 7307 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
124122, 123sylibr 234 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260  CRingccrg 20261  Unitcui 20381  invrcinvr 20413   RingHom crh 20495  DivRingcdr 20751  Fieldcfield 20752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-drng 20753  df-field 20754
This theorem is referenced by:  aks5lem7  42157
  Copyright terms: Public domain W3C validator