Step | Hyp | Ref
| Expression |
1 | | fldhmf1.3 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐾 RingHom 𝐿)) |
2 | | fldhmf1.4 |
. . . . 5
⊢ 𝐴 = (Base‘𝐾) |
3 | | fldhmf1.5 |
. . . . 5
⊢ 𝐵 = (Base‘𝐿) |
4 | 2, 3 | rhmf 20038 |
. . . 4
⊢ (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴⟶𝐵) |
5 | 1, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 1 | ad4antr 729 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿)) |
7 | | rhmghm 20037 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿)) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿)) |
9 | | simp-4r 781 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑎 ∈ 𝐴) |
10 | | fldhmf1.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ Field) |
11 | | isfld 20072 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
13 | 12 | simpld 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ DivRing) |
14 | 13 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐾 ∈ DivRing) |
15 | | drnggrp 20071 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ Grp) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐾 ∈ Grp) |
17 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑏 ∈ 𝐴) |
18 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘𝐾) = (invg‘𝐾) |
19 | 2, 18 | grpinvcl 18696 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Grp ∧ 𝑏 ∈ 𝐴) → ((invg‘𝐾)‘𝑏) ∈ 𝐴) |
20 | 16, 17, 19 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invg‘𝐾)‘𝑏) ∈ 𝐴) |
21 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐾) = (+g‘𝐾) |
22 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐿) = (+g‘𝐿) |
23 | 2, 21, 22 | ghmlin 18908 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎 ∈ 𝐴 ∧ ((invg‘𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘((invg‘𝐾)‘𝑏)))) |
24 | 8, 9, 20, 23 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) = ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘((invg‘𝐾)‘𝑏)))) |
25 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘𝐿) = (invg‘𝐿) |
26 | 2, 18, 25 | ghminv 18910 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏 ∈ 𝐴) → (𝐹‘((invg‘𝐾)‘𝑏)) = ((invg‘𝐿)‘(𝐹‘𝑏))) |
27 | 8, 17, 26 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((invg‘𝐾)‘𝑏)) = ((invg‘𝐿)‘(𝐹‘𝑏))) |
28 | 27 | oveq2d 7331 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘((invg‘𝐾)‘𝑏))) = ((𝐹‘𝑎)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏)))) |
29 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘𝑎) = (𝐹‘𝑏)) |
30 | 29 | oveq1d 7330 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘𝑎)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏))) = ((𝐹‘𝑏)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏)))) |
31 | | fldhmf1.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐿 ∈ Field) |
32 | 31 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → 𝐿 ∈ Field) |
33 | | isfld 20072 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing)) |
34 | 32, 33 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing)) |
35 | 34 | simpld 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → 𝐿 ∈ DivRing) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐿 ∈ DivRing) |
37 | | drngring 20070 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 ∈ DivRing → 𝐿 ∈ Ring) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐿 ∈ Ring) |
39 | 38 | ringgrpd 19860 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐿 ∈ Grp) |
40 | 6, 4 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐹:𝐴⟶𝐵) |
41 | 40, 17 | ffvelcdmd 7001 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘𝑏) ∈ 𝐵) |
42 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝐿) = (0g‘𝐿) |
43 | 3, 22, 42, 25 | grprinv 18698 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ Grp ∧ (𝐹‘𝑏) ∈ 𝐵) → ((𝐹‘𝑏)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏))) = (0g‘𝐿)) |
44 | 39, 41, 43 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘𝑏)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏))) = (0g‘𝐿)) |
45 | 30, 44 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘𝑎)(+g‘𝐿)((invg‘𝐿)‘(𝐹‘𝑏))) = (0g‘𝐿)) |
46 | 28, 45 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘𝑎)(+g‘𝐿)(𝐹‘((invg‘𝐾)‘𝑏))) = (0g‘𝐿)) |
47 | 24, 46 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) = (0g‘𝐿)) |
48 | 47 | oveq1d 7330 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = ((0g‘𝐿)(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))))) |
49 | 2, 21 | grpcl 18654 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Grp ∧ 𝑎 ∈ 𝐴 ∧ ((invg‘𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴) |
50 | 16, 9, 20, 49 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴) |
51 | 2, 18 | grpinvinv 18711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ Grp ∧ 𝑏 ∈ 𝐴) → ((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) = 𝑏) |
52 | 16, 17, 51 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) = 𝑏) |
53 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑎 ≠ 𝑏) |
54 | 53 | necomd 2997 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑏 ≠ 𝑎) |
55 | 52, 54 | eqnetrd 3009 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) ≠ 𝑎) |
56 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0g‘𝐾) = (0g‘𝐾) |
57 | 2, 21, 56, 18 | grpinvid2 18700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ Grp ∧
((invg‘𝐾)‘𝑏) ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) → (((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) = (0g‘𝐾))) |
58 | 57 | necon3bid 2986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ Grp ∧
((invg‘𝐾)‘𝑏) ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) → (((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾))) |
59 | 16, 20, 9, 58 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (((invg‘𝐾)‘((invg‘𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾))) |
60 | 55, 59 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾)) |
61 | 50, 60 | jca 512 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾))) |
62 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(Unit‘𝐾) =
(Unit‘𝐾) |
63 | 2, 62, 56 | drngunit 20068 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ DivRing → ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾)))) |
64 | 14, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ≠ (0g‘𝐾)))) |
65 | 61, 64 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾)) |
66 | | rhmunitinv 20062 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) = ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) |
67 | 6, 65, 66 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) = ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) |
68 | | elrhmunit 20061 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐿)) |
69 | 6, 65, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐿)) |
70 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(Unit‘𝐿) =
(Unit‘𝐿) |
71 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(invr‘𝐿) = (invr‘𝐿) |
72 | 70, 71 | unitinvcl 19984 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ (Unit‘𝐿)) |
73 | 38, 69, 72 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ (Unit‘𝐿)) |
74 | 3, 70, 42 | drngunit 20068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 ∈ DivRing →
(((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ≠ (0g‘𝐿)))) |
75 | 36, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ≠ (0g‘𝐿)))) |
76 | 75 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ≠ (0g‘𝐿)))) |
77 | 73, 76 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ≠ (0g‘𝐿))) |
78 | 77 | simpld 495 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invr‘𝐿)‘(𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵) |
79 | 67, 78 | eqeltrd 2838 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵) |
80 | 38, 79 | jca 512 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵)) |
81 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(.r‘𝐿) = (.r‘𝐿) |
82 | 3, 81, 42 | ringlz 19894 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ Ring ∧ (𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) ∈ 𝐵) → ((0g‘𝐿)(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (0g‘𝐿)) |
83 | 80, 82 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((0g‘𝐿)(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (0g‘𝐿)) |
84 | 48, 83 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (0g‘𝐿)) |
85 | 84 | eqcomd 2743 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (0g‘𝐿) = ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))))) |
86 | 12 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ CRing) |
87 | 86 | crngringd 19864 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ Ring) |
88 | 87 | ad4antr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐾 ∈ Ring) |
89 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(invr‘𝐾) = (invr‘𝐾) |
90 | 62, 89 | unitinvcl 19984 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Ring ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐾)) |
91 | 88, 65, 90 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐾)) |
92 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐾) =
(Base‘𝐾) |
93 | 92, 62 | unitcl 19969 |
. . . . . . . . . . . . 13
⊢
(((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Base‘𝐾)) |
94 | 2 | eqcomi 2746 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
𝐴 |
95 | 93, 94 | eleqtrdi 2848 |
. . . . . . . . . . . 12
⊢
(((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ 𝐴) |
96 | 91, 95 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ 𝐴) |
97 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(.r‘𝐾) = (.r‘𝐾) |
98 | 2, 97, 81 | rhmmul 20039 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))))) |
99 | 6, 50, 96, 98 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))))) |
100 | 99 | eqcomd 2743 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝐹‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))(.r‘𝐿)(𝐹‘((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))))) |
101 | | drngring 20070 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ Ring) |
102 | 14, 101 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝐾 ∈ Ring) |
103 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(1r‘𝐾) = (1r‘𝐾) |
104 | 62, 89, 97, 103 | unitrinv 19988 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Ring ∧ (𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) = (1r‘𝐾)) |
105 | 102, 65, 104 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏)))) = (1r‘𝐾)) |
106 | 105 | fveq2d 6815 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (𝐹‘(1r‘𝐾))) |
107 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(1r‘𝐿) = (1r‘𝐿) |
108 | 103, 107 | rhm1 20042 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r‘𝐾)) = (1r‘𝐿)) |
109 | 6, 108 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘(1r‘𝐾)) = (1r‘𝐿)) |
110 | 106, 109 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘((𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))(.r‘𝐾)((invr‘𝐾)‘(𝑎(+g‘𝐾)((invg‘𝐾)‘𝑏))))) = (1r‘𝐿)) |
111 | 85, 100, 110 | 3eqtrd 2781 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (0g‘𝐿) = (1r‘𝐿)) |
112 | 42, 107 | drngunz 20078 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ DivRing →
(1r‘𝐿)
≠ (0g‘𝐿)) |
113 | 35, 112 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → (1r‘𝐿) ≠
(0g‘𝐿)) |
114 | 113 | necomd 2997 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → (0g‘𝐿) ≠
(1r‘𝐿)) |
115 | 114 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (0g‘𝐿) ≠
(1r‘𝐿)) |
116 | 115 | neneqd 2946 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ¬ (0g‘𝐿) = (1r‘𝐿)) |
117 | 111, 116 | pm2.65da 814 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → ¬ (𝐹‘𝑎) = (𝐹‘𝑏)) |
118 | 117 | neqned 2948 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) ∧ 𝑎 ≠ 𝑏) → (𝐹‘𝑎) ≠ (𝐹‘𝑏)) |
119 | 118 | ex 413 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐴) → (𝑎 ≠ 𝑏 → (𝐹‘𝑎) ≠ (𝐹‘𝑏))) |
120 | 119 | ralrimiva 3140 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑏 ∈ 𝐴 (𝑎 ≠ 𝑏 → (𝐹‘𝑎) ≠ (𝐹‘𝑏))) |
121 | 120 | ralrimiva 3140 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎 ≠ 𝑏 → (𝐹‘𝑎) ≠ (𝐹‘𝑏))) |
122 | 5, 121 | jca 512 |
. 2
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎 ≠ 𝑏 → (𝐹‘𝑎) ≠ (𝐹‘𝑏)))) |
123 | | dff14a 7182 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎 ≠ 𝑏 → (𝐹‘𝑎) ≠ (𝐹‘𝑏)))) |
124 | 122, 123 | sylibr 233 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |