Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmf1 Structured version   Visualization version   GIF version

Theorem fldhmf1 42204
Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
fldhmf1.1 (𝜑𝐾 ∈ Field)
fldhmf1.2 (𝜑𝐿 ∈ Field)
fldhmf1.3 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
fldhmf1.4 𝐴 = (Base‘𝐾)
fldhmf1.5 𝐵 = (Base‘𝐿)
Assertion
Ref Expression
fldhmf1 (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem fldhmf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldhmf1.3 . . . 4 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
2 fldhmf1.4 . . . . 5 𝐴 = (Base‘𝐾)
3 fldhmf1.5 . . . . 5 𝐵 = (Base‘𝐿)
42, 3rhmf 20404 . . . 4 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴𝐵)
51, 4syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
61ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿))
7 rhmghm 20403 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
86, 7syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
9 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
10 fldhmf1.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
11 isfld 20657 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1210, 11sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1312simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
1413ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ DivRing)
15 drnggrp 20656 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ Grp)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Grp)
17 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
18 eqid 2733 . . . . . . . . . . . . . . . 16 (invg𝐾) = (invg𝐾)
192, 18grpinvcl 18902 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘𝑏) ∈ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘𝑏) ∈ 𝐴)
21 eqid 2733 . . . . . . . . . . . . . . 15 (+g𝐾) = (+g𝐾)
22 eqid 2733 . . . . . . . . . . . . . . 15 (+g𝐿) = (+g𝐿)
232, 21, 22ghmlin 19135 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
248, 9, 20, 23syl3anc 1373 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
25 eqid 2733 . . . . . . . . . . . . . . . . 17 (invg𝐿) = (invg𝐿)
262, 18, 25ghminv 19137 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏𝐴) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
278, 17, 26syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
2827oveq2d 7368 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
3029oveq1d 7367 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
31 fldhmf1.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐿 ∈ Field)
3231ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ Field)
33 isfld 20657 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3432, 33sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3534simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ DivRing)
3635adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ DivRing)
37 drngring 20653 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → 𝐿 ∈ Ring)
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Ring)
3938ringgrpd 20162 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Grp)
406, 4syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴𝐵)
4140, 17ffvelcdmd 7024 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) ∈ 𝐵)
42 eqid 2733 . . . . . . . . . . . . . . . . 17 (0g𝐿) = (0g𝐿)
433, 22, 42, 25grprinv 18905 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ Grp ∧ (𝐹𝑏) ∈ 𝐵) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4439, 41, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4530, 44eqtrd 2768 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4628, 45eqtrd 2768 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = (0g𝐿))
4724, 46eqtrd 2768 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = (0g𝐿))
4847oveq1d 7367 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
492, 21grpcl 18856 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
5016, 9, 20, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
512, 18grpinvinv 18920 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
5216, 17, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝑏)
5453necomd 2984 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝑎)
5552, 54eqnetrd 2996 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎)
56 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐾) = (0g𝐾)
572, 21, 56, 18grpinvid2 18907 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) = (0g𝐾)))
5857necon3bid 2973 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
5916, 20, 9, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
6055, 59mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))
6150, 60jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
62 eqid 2733 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐾) = (Unit‘𝐾)
632, 62, 56drngunit 20651 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ DivRing → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6414, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6561, 64mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾))
66 rhmunitinv 20428 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
676, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
68 elrhmunit 20427 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
696, 65, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
70 eqid 2733 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐿) = (Unit‘𝐿)
71 eqid 2733 . . . . . . . . . . . . . . . . . 18 (invr𝐿) = (invr𝐿)
7270, 71unitinvcl 20310 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
7338, 69, 72syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
743, 70, 42drngunit 20651 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7536, 74syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7675biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7773, 76mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿)))
7877simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
7967, 78eqeltrd 2833 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
8038, 79jca 511 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵))
81 eqid 2733 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
823, 81, 42ringlz 20213 . . . . . . . . . . . 12 ((𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8380, 82syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8448, 83eqtrd 2768 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8584eqcomd 2739 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
8612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ CRing)
8786crngringd 20166 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Ring)
8887ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
89 eqid 2733 . . . . . . . . . . . . . 14 (invr𝐾) = (invr𝐾)
9062, 89unitinvcl 20310 . . . . . . . . . . . . 13 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
9188, 65, 90syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
92 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
9392, 62unitcl 20295 . . . . . . . . . . . . 13 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Base‘𝐾))
942eqcomi 2742 . . . . . . . . . . . . 13 (Base‘𝐾) = 𝐴
9593, 94eleqtrdi 2843 . . . . . . . . . . . 12 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
9691, 95syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
97 eqid 2733 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
982, 97, 81rhmmul 20405 . . . . . . . . . . 11 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
996, 50, 96, 98syl3anc 1373 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
10099eqcomd 2739 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
101 drngring 20653 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
10214, 101syl 17 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
103 eqid 2733 . . . . . . . . . . . . 13 (1r𝐾) = (1r𝐾)
10462, 89, 97, 103unitrinv 20314 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
105102, 65, 104syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
106105fveq2d 6832 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘(1r𝐾)))
107 eqid 2733 . . . . . . . . . . . 12 (1r𝐿) = (1r𝐿)
108103, 107rhm1 20408 . . . . . . . . . . 11 (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r𝐾)) = (1r𝐿))
1096, 108syl 17 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(1r𝐾)) = (1r𝐿))
110106, 109eqtrd 2768 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (1r𝐿))
11185, 100, 1103eqtrd 2772 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = (1r𝐿))
11242, 107drngunz 20664 . . . . . . . . . . . 12 (𝐿 ∈ DivRing → (1r𝐿) ≠ (0g𝐿))
11335, 112syl 17 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (1r𝐿) ≠ (0g𝐿))
114113necomd 2984 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (0g𝐿) ≠ (1r𝐿))
115114adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) ≠ (1r𝐿))
116115neneqd 2934 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ (0g𝐿) = (1r𝐿))
117111, 116pm2.65da 816 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → ¬ (𝐹𝑎) = (𝐹𝑏))
118117neqned 2936 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐹𝑎) ≠ (𝐹𝑏))
119118ex 412 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑏𝐴) → (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
120119ralrimiva 3125 . . . 4 ((𝜑𝑎𝐴) → ∀𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
121120ralrimiva 3125 . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
1225, 121jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
123 dff14a 7210 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
124122, 123sylibr 234 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345  Grpcgrp 18848  invgcminusg 18849   GrpHom cghm 19126  1rcur 20101  Ringcrg 20153  CRingccrg 20154  Unitcui 20275  invrcinvr 20307   RingHom crh 20389  DivRingcdr 20646  Fieldcfield 20647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-rhm 20392  df-drng 20648  df-field 20649
This theorem is referenced by:  aks5lem7  42314
  Copyright terms: Public domain W3C validator