Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmf1 Structured version   Visualization version   GIF version

Theorem fldhmf1 42108
Description: A field homomorphism is injective. This follows immediately from the definition of the ring homomorphism that sends the multiplicative identity to the multiplicative identity. (Contributed by metakunt, 7-Jan-2025.)
Hypotheses
Ref Expression
fldhmf1.1 (𝜑𝐾 ∈ Field)
fldhmf1.2 (𝜑𝐿 ∈ Field)
fldhmf1.3 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
fldhmf1.4 𝐴 = (Base‘𝐾)
fldhmf1.5 𝐵 = (Base‘𝐿)
Assertion
Ref Expression
fldhmf1 (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem fldhmf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldhmf1.3 . . . 4 (𝜑𝐹 ∈ (𝐾 RingHom 𝐿))
2 fldhmf1.4 . . . . 5 𝐴 = (Base‘𝐾)
3 fldhmf1.5 . . . . 5 𝐵 = (Base‘𝐿)
42, 3rhmf 20450 . . . 4 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹:𝐴𝐵)
51, 4syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
61ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 RingHom 𝐿))
7 rhmghm 20449 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐾 RingHom 𝐿) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
86, 7syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹 ∈ (𝐾 GrpHom 𝐿))
9 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
10 fldhmf1.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ Field)
11 isfld 20705 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1210, 11sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
1312simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ DivRing)
1413ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ DivRing)
15 drnggrp 20704 . . . . . . . . . . . . . . . 16 (𝐾 ∈ DivRing → 𝐾 ∈ Grp)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Grp)
17 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
18 eqid 2736 . . . . . . . . . . . . . . . 16 (invg𝐾) = (invg𝐾)
192, 18grpinvcl 18975 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘𝑏) ∈ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘𝑏) ∈ 𝐴)
21 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝐾) = (+g𝐾)
22 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝐿) = (+g𝐿)
232, 21, 22ghmlin 19209 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
248, 9, 20, 23syl3anc 1373 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))))
25 eqid 2736 . . . . . . . . . . . . . . . . 17 (invg𝐿) = (invg𝐿)
262, 18, 25ghminv 19211 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝐾 GrpHom 𝐿) ∧ 𝑏𝐴) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
278, 17, 26syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invg𝐾)‘𝑏)) = ((invg𝐿)‘(𝐹𝑏)))
2827oveq2d 7426 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
3029oveq1d 7425 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))))
31 fldhmf1.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐿 ∈ Field)
3231ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ Field)
33 isfld 20705 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ Field ↔ (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3432, 33sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐿 ∈ DivRing ∧ 𝐿 ∈ CRing))
3534simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → 𝐿 ∈ DivRing)
3635adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ DivRing)
37 drngring 20701 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → 𝐿 ∈ Ring)
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Ring)
3938ringgrpd 20207 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐿 ∈ Grp)
406, 4syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴𝐵)
4140, 17ffvelcdmd 7080 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) ∈ 𝐵)
42 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g𝐿) = (0g𝐿)
433, 22, 42, 25grprinv 18978 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ Grp ∧ (𝐹𝑏) ∈ 𝐵) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4439, 41, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑏)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4530, 44eqtrd 2771 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)((invg𝐿)‘(𝐹𝑏))) = (0g𝐿))
4628, 45eqtrd 2771 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹𝑎)(+g𝐿)(𝐹‘((invg𝐾)‘𝑏))) = (0g𝐿))
4724, 46eqtrd 2771 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) = (0g𝐿))
4847oveq1d 7425 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
492, 21grpcl 18929 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Grp ∧ 𝑎𝐴 ∧ ((invg𝐾)‘𝑏) ∈ 𝐴) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
5016, 9, 20, 49syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴)
512, 18grpinvinv 18993 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ 𝑏𝐴) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
5216, 17, 51syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑏)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝑏)
5453necomd 2988 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝑎)
5552, 54eqnetrd 3000 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎)
56 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐾) = (0g𝐾)
572, 21, 56, 18grpinvid2 18980 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) = 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) = (0g𝐾)))
5857necon3bid 2977 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Grp ∧ ((invg𝐾)‘𝑏) ∈ 𝐴𝑎𝐴) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
5916, 20, 9, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invg𝐾)‘((invg𝐾)‘𝑏)) ≠ 𝑎 ↔ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
6055, 59mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))
6150, 60jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾)))
62 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐾) = (Unit‘𝐾)
632, 62, 56drngunit 20699 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ DivRing → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6414, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾) ↔ ((𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ≠ (0g𝐾))))
6561, 64mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾))
66 rhmunitinv 20476 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
676, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))))
68 elrhmunit 20475 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
696, 65, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿))
70 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Unit‘𝐿) = (Unit‘𝐿)
71 eqid 2736 . . . . . . . . . . . . . . . . . 18 (invr𝐿) = (invr𝐿)
7270, 71unitinvcl 20355 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ Ring ∧ (𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐿)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
7338, 69, 72syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿))
743, 70, 42drngunit 20699 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ DivRing → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7536, 74syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) ↔ (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7675biimpd 229 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ (Unit‘𝐿) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿))))
7773, 76mpd 15 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵 ∧ ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ≠ (0g𝐿)))
7877simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐿)‘(𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
7967, 78eqeltrd 2835 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵)
8038, 79jca 511 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵))
81 eqid 2736 . . . . . . . . . . . . 13 (.r𝐿) = (.r𝐿)
823, 81, 42ringlz 20258 . . . . . . . . . . . 12 ((𝐿 ∈ Ring ∧ (𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) ∈ 𝐵) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8380, 82syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((0g𝐿)(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8448, 83eqtrd 2771 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (0g𝐿))
8584eqcomd 2742 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
8612simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ CRing)
8786crngringd 20211 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Ring)
8887ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
89 eqid 2736 . . . . . . . . . . . . . 14 (invr𝐾) = (invr𝐾)
9062, 89unitinvcl 20355 . . . . . . . . . . . . 13 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
9188, 65, 90syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾))
92 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
9392, 62unitcl 20340 . . . . . . . . . . . . 13 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Base‘𝐾))
942eqcomi 2745 . . . . . . . . . . . . 13 (Base‘𝐾) = 𝐴
9593, 94eleqtrdi 2845 . . . . . . . . . . . 12 (((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ (Unit‘𝐾) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
9691, 95syl 17 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴)
97 eqid 2736 . . . . . . . . . . . 12 (.r𝐾) = (.r𝐾)
982, 97, 81rhmmul 20451 . . . . . . . . . . 11 ((𝐹 ∈ (𝐾 RingHom 𝐿) ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ 𝐴 ∧ ((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))) ∈ 𝐴) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
996, 50, 96, 98syl3anc 1373 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
10099eqcomd 2742 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝐹‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))(.r𝐿)(𝐹‘((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))))
101 drngring 20701 . . . . . . . . . . . . 13 (𝐾 ∈ DivRing → 𝐾 ∈ Ring)
10214, 101syl 17 . . . . . . . . . . . 12 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐾 ∈ Ring)
103 eqid 2736 . . . . . . . . . . . . 13 (1r𝐾) = (1r𝐾)
10462, 89, 97, 103unitrinv 20359 . . . . . . . . . . . 12 ((𝐾 ∈ Ring ∧ (𝑎(+g𝐾)((invg𝐾)‘𝑏)) ∈ (Unit‘𝐾)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
105102, 65, 104syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏)))) = (1r𝐾))
106105fveq2d 6885 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (𝐹‘(1r𝐾)))
107 eqid 2736 . . . . . . . . . . . 12 (1r𝐿) = (1r𝐿)
108103, 107rhm1 20454 . . . . . . . . . . 11 (𝐹 ∈ (𝐾 RingHom 𝐿) → (𝐹‘(1r𝐾)) = (1r𝐿))
1096, 108syl 17 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘(1r𝐾)) = (1r𝐿))
110106, 109eqtrd 2771 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹‘((𝑎(+g𝐾)((invg𝐾)‘𝑏))(.r𝐾)((invr𝐾)‘(𝑎(+g𝐾)((invg𝐾)‘𝑏))))) = (1r𝐿))
11185, 100, 1103eqtrd 2775 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) = (1r𝐿))
11242, 107drngunz 20712 . . . . . . . . . . . 12 (𝐿 ∈ DivRing → (1r𝐿) ≠ (0g𝐿))
11335, 112syl 17 . . . . . . . . . . 11 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (1r𝐿) ≠ (0g𝐿))
114113necomd 2988 . . . . . . . . . 10 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (0g𝐿) ≠ (1r𝐿))
115114adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → (0g𝐿) ≠ (1r𝐿))
116115neneqd 2938 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ (0g𝐿) = (1r𝐿))
117111, 116pm2.65da 816 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → ¬ (𝐹𝑎) = (𝐹𝑏))
118117neqned 2940 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐴) ∧ 𝑎𝑏) → (𝐹𝑎) ≠ (𝐹𝑏))
119118ex 412 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑏𝐴) → (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
120119ralrimiva 3133 . . . 4 ((𝜑𝑎𝐴) → ∀𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
121120ralrimiva 3133 . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏)))
1225, 121jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
123 dff14a 7268 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑏 → (𝐹𝑎) ≠ (𝐹𝑏))))
124122, 123sylibr 234 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922   GrpHom cghm 19200  1rcur 20146  Ringcrg 20198  CRingccrg 20199  Unitcui 20320  invrcinvr 20352   RingHom crh 20434  DivRingcdr 20694  Fieldcfield 20695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-drng 20696  df-field 20697
This theorem is referenced by:  aks5lem7  42218
  Copyright terms: Public domain W3C validator