Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version |
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh0 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12696 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 0z 12330 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | sselii 3918 | . . 3 ⊢ 0 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 31933 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
8 | 3, 7 | mpan2 688 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
9 | 1z 12350 | . . . . . . . . . . 11 ⊢ 1 ∈ ℤ | |
10 | gcd0id 16226 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (0 gcd 1) = (abs‘1)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0 gcd 1) = (abs‘1) |
12 | abs1 15009 | . . . . . . . . . 10 ⊢ (abs‘1) = 1 | |
13 | 11, 12 | eqtri 2766 | . . . . . . . . 9 ⊢ (0 gcd 1) = 1 |
14 | 0cn 10967 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
15 | 14 | div1i 11703 | . . . . . . . . . 10 ⊢ (0 / 1) = 0 |
16 | 15 | eqcomi 2747 | . . . . . . . . 9 ⊢ 0 = (0 / 1) |
17 | 13, 16 | pm3.2i 471 | . . . . . . . 8 ⊢ ((0 gcd 1) = 1 ∧ 0 = (0 / 1)) |
18 | 1nn 11984 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
19 | qnumdenbi 16448 | . . . . . . . . 9 ⊢ ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))) | |
20 | 3, 2, 18, 19 | mp3an 1460 | . . . . . . . 8 ⊢ (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)) |
21 | 17, 20 | mpbi 229 | . . . . . . 7 ⊢ ((numer‘0) = 0 ∧ (denom‘0) = 1) |
22 | 21 | simpli 484 | . . . . . 6 ⊢ (numer‘0) = 0 |
23 | 22 | fveq2i 6777 | . . . . 5 ⊢ (𝐿‘(numer‘0)) = (𝐿‘0) |
24 | 21 | simpri 486 | . . . . . 6 ⊢ (denom‘0) = 1 |
25 | 24 | fveq2i 6777 | . . . . 5 ⊢ (𝐿‘(denom‘0)) = (𝐿‘1) |
26 | 23, 25 | oveq12i 7287 | . . . 4 ⊢ ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1)) |
27 | drngring 19998 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
28 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
29 | 6, 28 | zrh0 20715 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘0) = (0g‘𝑅)) |
30 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
31 | 6, 30 | zrh1 20714 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
32 | 29, 31 | oveq12d 7293 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
33 | 27, 32 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
34 | drnggrp 19999 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | |
35 | 4, 28 | grpidcl 18607 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ 𝐵) |
36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (0g‘𝑅) ∈ 𝐵) |
37 | 4, 5, 30 | dvr1 19931 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
38 | 27, 36, 37 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
39 | 33, 38 | eqtrd 2778 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g‘𝑅)) |
40 | 26, 39 | eqtrid 2790 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
41 | 40 | adantr 481 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
42 | 8, 41 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℚcq 12688 abscabs 14945 gcd cgcd 16201 numercnumer 16437 denomcdenom 16438 Basecbs 16912 0gc0g 17150 Grpcgrp 18577 1rcur 19737 Ringcrg 19783 /rcdvr 19924 DivRingcdr 19991 ℤRHomczrh 20701 chrcchr 20703 ℚHomcqqh 31922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-numer 16439 df-denom 16440 df-gz 16631 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-od 19136 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-chr 20707 df-qqh 31923 |
This theorem is referenced by: qqhcn 31941 rrh0 31965 |
Copyright terms: Public domain | W3C validator |