| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version | ||
| Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
| qqhval2.1 | ⊢ / = (/r‘𝑅) |
| qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqh0 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12998 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 0z 12624 | . . . 4 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | sselii 3980 | . . 3 ⊢ 0 ∈ ℚ |
| 4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 7 | 4, 5, 6 | qqhvval 33984 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
| 9 | 1z 12647 | . . . . . . . . . . 11 ⊢ 1 ∈ ℤ | |
| 10 | gcd0id 16556 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (0 gcd 1) = (abs‘1)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0 gcd 1) = (abs‘1) |
| 12 | abs1 15336 | . . . . . . . . . 10 ⊢ (abs‘1) = 1 | |
| 13 | 11, 12 | eqtri 2765 | . . . . . . . . 9 ⊢ (0 gcd 1) = 1 |
| 14 | 0cn 11253 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
| 15 | 14 | div1i 11995 | . . . . . . . . . 10 ⊢ (0 / 1) = 0 |
| 16 | 15 | eqcomi 2746 | . . . . . . . . 9 ⊢ 0 = (0 / 1) |
| 17 | 13, 16 | pm3.2i 470 | . . . . . . . 8 ⊢ ((0 gcd 1) = 1 ∧ 0 = (0 / 1)) |
| 18 | 1nn 12277 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 19 | qnumdenbi 16781 | . . . . . . . . 9 ⊢ ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))) | |
| 20 | 3, 2, 18, 19 | mp3an 1463 | . . . . . . . 8 ⊢ (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)) |
| 21 | 17, 20 | mpbi 230 | . . . . . . 7 ⊢ ((numer‘0) = 0 ∧ (denom‘0) = 1) |
| 22 | 21 | simpli 483 | . . . . . 6 ⊢ (numer‘0) = 0 |
| 23 | 22 | fveq2i 6909 | . . . . 5 ⊢ (𝐿‘(numer‘0)) = (𝐿‘0) |
| 24 | 21 | simpri 485 | . . . . . 6 ⊢ (denom‘0) = 1 |
| 25 | 24 | fveq2i 6909 | . . . . 5 ⊢ (𝐿‘(denom‘0)) = (𝐿‘1) |
| 26 | 23, 25 | oveq12i 7443 | . . . 4 ⊢ ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1)) |
| 27 | drngring 20736 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 28 | eqid 2737 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 29 | 6, 28 | zrh0 21524 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘0) = (0g‘𝑅)) |
| 30 | eqid 2737 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 31 | 6, 30 | zrh1 21523 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
| 32 | 29, 31 | oveq12d 7449 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
| 33 | 27, 32 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
| 34 | drnggrp 20739 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | |
| 35 | 4, 28 | grpidcl 18983 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ 𝐵) |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (0g‘𝑅) ∈ 𝐵) |
| 37 | 4, 5, 30 | dvr1 20407 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
| 38 | 27, 36, 37 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
| 39 | 33, 38 | eqtrd 2777 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g‘𝑅)) |
| 40 | 26, 39 | eqtrid 2789 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
| 41 | 40 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
| 42 | 8, 41 | eqtrd 2777 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℚcq 12990 abscabs 15273 gcd cgcd 16531 numercnumer 16770 denomcdenom 16771 Basecbs 17247 0gc0g 17484 Grpcgrp 18951 1rcur 20178 Ringcrg 20230 /rcdvr 20400 DivRingcdr 20729 ℤRHomczrh 21510 chrcchr 21512 ℚHomcqqh 33971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-numer 16772 df-denom 16773 df-gz 16968 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-od 19546 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-drng 20731 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-chr 21516 df-qqh 33972 |
| This theorem is referenced by: qqhcn 33992 rrh0 34016 |
| Copyright terms: Public domain | W3C validator |