![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version |
Description: The image of 0 by the βHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | β’ π΅ = (Baseβπ ) |
qqhval2.1 | β’ / = (/rβπ ) |
qqhval2.2 | β’ πΏ = (β€RHomβπ ) |
Ref | Expression |
---|---|
qqh0 | β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β0) = (0gβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12946 | . . . 4 β’ β€ β β | |
2 | 0z 12575 | . . . 4 β’ 0 β β€ | |
3 | 1, 2 | sselii 3980 | . . 3 β’ 0 β β |
4 | qqhval2.0 | . . . 4 β’ π΅ = (Baseβπ ) | |
5 | qqhval2.1 | . . . 4 β’ / = (/rβπ ) | |
6 | qqhval2.2 | . . . 4 β’ πΏ = (β€RHomβπ ) | |
7 | 4, 5, 6 | qqhvval 33259 | . . 3 β’ (((π β DivRing β§ (chrβπ ) = 0) β§ 0 β β) β ((βHomβπ )β0) = ((πΏβ(numerβ0)) / (πΏβ(denomβ0)))) |
8 | 3, 7 | mpan2 687 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β0) = ((πΏβ(numerβ0)) / (πΏβ(denomβ0)))) |
9 | 1z 12598 | . . . . . . . . . . 11 β’ 1 β β€ | |
10 | gcd0id 16466 | . . . . . . . . . . 11 β’ (1 β β€ β (0 gcd 1) = (absβ1)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 β’ (0 gcd 1) = (absβ1) |
12 | abs1 15250 | . . . . . . . . . 10 β’ (absβ1) = 1 | |
13 | 11, 12 | eqtri 2758 | . . . . . . . . 9 β’ (0 gcd 1) = 1 |
14 | 0cn 11212 | . . . . . . . . . . 11 β’ 0 β β | |
15 | 14 | div1i 11948 | . . . . . . . . . 10 β’ (0 / 1) = 0 |
16 | 15 | eqcomi 2739 | . . . . . . . . 9 β’ 0 = (0 / 1) |
17 | 13, 16 | pm3.2i 469 | . . . . . . . 8 β’ ((0 gcd 1) = 1 β§ 0 = (0 / 1)) |
18 | 1nn 12229 | . . . . . . . . 9 β’ 1 β β | |
19 | qnumdenbi 16686 | . . . . . . . . 9 β’ ((0 β β β§ 0 β β€ β§ 1 β β) β (((0 gcd 1) = 1 β§ 0 = (0 / 1)) β ((numerβ0) = 0 β§ (denomβ0) = 1))) | |
20 | 3, 2, 18, 19 | mp3an 1459 | . . . . . . . 8 β’ (((0 gcd 1) = 1 β§ 0 = (0 / 1)) β ((numerβ0) = 0 β§ (denomβ0) = 1)) |
21 | 17, 20 | mpbi 229 | . . . . . . 7 β’ ((numerβ0) = 0 β§ (denomβ0) = 1) |
22 | 21 | simpli 482 | . . . . . 6 β’ (numerβ0) = 0 |
23 | 22 | fveq2i 6895 | . . . . 5 β’ (πΏβ(numerβ0)) = (πΏβ0) |
24 | 21 | simpri 484 | . . . . . 6 β’ (denomβ0) = 1 |
25 | 24 | fveq2i 6895 | . . . . 5 β’ (πΏβ(denomβ0)) = (πΏβ1) |
26 | 23, 25 | oveq12i 7425 | . . . 4 β’ ((πΏβ(numerβ0)) / (πΏβ(denomβ0))) = ((πΏβ0) / (πΏβ1)) |
27 | drngring 20509 | . . . . . 6 β’ (π β DivRing β π β Ring) | |
28 | eqid 2730 | . . . . . . . 8 β’ (0gβπ ) = (0gβπ ) | |
29 | 6, 28 | zrh0 21284 | . . . . . . 7 β’ (π β Ring β (πΏβ0) = (0gβπ )) |
30 | eqid 2730 | . . . . . . . 8 β’ (1rβπ ) = (1rβπ ) | |
31 | 6, 30 | zrh1 21283 | . . . . . . 7 β’ (π β Ring β (πΏβ1) = (1rβπ )) |
32 | 29, 31 | oveq12d 7431 | . . . . . 6 β’ (π β Ring β ((πΏβ0) / (πΏβ1)) = ((0gβπ ) / (1rβπ ))) |
33 | 27, 32 | syl 17 | . . . . 5 β’ (π β DivRing β ((πΏβ0) / (πΏβ1)) = ((0gβπ ) / (1rβπ ))) |
34 | drnggrp 20512 | . . . . . . 7 β’ (π β DivRing β π β Grp) | |
35 | 4, 28 | grpidcl 18888 | . . . . . . 7 β’ (π β Grp β (0gβπ ) β π΅) |
36 | 34, 35 | syl 17 | . . . . . 6 β’ (π β DivRing β (0gβπ ) β π΅) |
37 | 4, 5, 30 | dvr1 20300 | . . . . . 6 β’ ((π β Ring β§ (0gβπ ) β π΅) β ((0gβπ ) / (1rβπ )) = (0gβπ )) |
38 | 27, 36, 37 | syl2anc 582 | . . . . 5 β’ (π β DivRing β ((0gβπ ) / (1rβπ )) = (0gβπ )) |
39 | 33, 38 | eqtrd 2770 | . . . 4 β’ (π β DivRing β ((πΏβ0) / (πΏβ1)) = (0gβπ )) |
40 | 26, 39 | eqtrid 2782 | . . 3 β’ (π β DivRing β ((πΏβ(numerβ0)) / (πΏβ(denomβ0))) = (0gβπ )) |
41 | 40 | adantr 479 | . 2 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((πΏβ(numerβ0)) / (πΏβ(denomβ0))) = (0gβπ )) |
42 | 8, 41 | eqtrd 2770 | 1 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β0) = (0gβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6544 (class class class)co 7413 0cc0 11114 1c1 11115 / cdiv 11877 βcn 12218 β€cz 12564 βcq 12938 abscabs 15187 gcd cgcd 16441 numercnumer 16675 denomcdenom 16676 Basecbs 17150 0gc0g 17391 Grpcgrp 18857 1rcur 20077 Ringcrg 20129 /rcdvr 20293 DivRingcdr 20502 β€RHomczrh 21270 chrcchr 21272 βHomcqqh 33248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-fz 13491 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16204 df-gcd 16442 df-numer 16677 df-denom 16678 df-gz 16869 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-grp 18860 df-minusg 18861 df-sbg 18862 df-mulg 18989 df-subg 19041 df-ghm 19130 df-od 19439 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-cring 20132 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-dvr 20294 df-rhm 20365 df-subrng 20436 df-subrg 20461 df-drng 20504 df-cnfld 21147 df-zring 21220 df-zrh 21274 df-chr 21276 df-qqh 33249 |
This theorem is referenced by: qqhcn 33267 rrh0 33291 |
Copyright terms: Public domain | W3C validator |