Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh0 Structured version   Visualization version   GIF version

Theorem qqh0 31834
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh0 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))

Proof of Theorem qqh0
StepHypRef Expression
1 zssq 12625 . . . 4 ℤ ⊆ ℚ
2 0z 12260 . . . 4 0 ∈ ℤ
31, 2sselii 3914 . . 3 0 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 31833 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
83, 7mpan2 687 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
9 1z 12280 . . . . . . . . . . 11 1 ∈ ℤ
10 gcd0id 16154 . . . . . . . . . . 11 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
119, 10ax-mp 5 . . . . . . . . . 10 (0 gcd 1) = (abs‘1)
12 abs1 14937 . . . . . . . . . 10 (abs‘1) = 1
1311, 12eqtri 2766 . . . . . . . . 9 (0 gcd 1) = 1
14 0cn 10898 . . . . . . . . . . 11 0 ∈ ℂ
1514div1i 11633 . . . . . . . . . 10 (0 / 1) = 0
1615eqcomi 2747 . . . . . . . . 9 0 = (0 / 1)
1713, 16pm3.2i 470 . . . . . . . 8 ((0 gcd 1) = 1 ∧ 0 = (0 / 1))
18 1nn 11914 . . . . . . . . 9 1 ∈ ℕ
19 qnumdenbi 16376 . . . . . . . . 9 ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)))
203, 2, 18, 19mp3an 1459 . . . . . . . 8 (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))
2117, 20mpbi 229 . . . . . . 7 ((numer‘0) = 0 ∧ (denom‘0) = 1)
2221simpli 483 . . . . . 6 (numer‘0) = 0
2322fveq2i 6759 . . . . 5 (𝐿‘(numer‘0)) = (𝐿‘0)
2421simpri 485 . . . . . 6 (denom‘0) = 1
2524fveq2i 6759 . . . . 5 (𝐿‘(denom‘0)) = (𝐿‘1)
2623, 25oveq12i 7267 . . . 4 ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1))
27 drngring 19913 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
28 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
296, 28zrh0 20627 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
30 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
316, 30zrh1 20626 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
3229, 31oveq12d 7273 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
3327, 32syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
34 drnggrp 19914 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
354, 28grpidcl 18522 . . . . . . 7 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
3634, 35syl 17 . . . . . 6 (𝑅 ∈ DivRing → (0g𝑅) ∈ 𝐵)
374, 5, 30dvr1 19846 . . . . . 6 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3827, 36, 37syl2anc 583 . . . . 5 (𝑅 ∈ DivRing → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3933, 38eqtrd 2778 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g𝑅))
4026, 39syl5eq 2791 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
4140adantr 480 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
428, 41eqtrd 2778 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   / cdiv 11562  cn 11903  cz 12249  cq 12617  abscabs 14873   gcd cgcd 16129  numercnumer 16365  denomcdenom 16366  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  1rcur 19652  Ringcrg 19698  /rcdvr 19839  DivRingcdr 19906  ℤRHomczrh 20613  chrcchr 20615  ℚHomcqqh 31822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-od 19051  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-chr 20619  df-qqh 31823
This theorem is referenced by:  qqhcn  31841  rrh0  31865
  Copyright terms: Public domain W3C validator