Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh0 Structured version   Visualization version   GIF version

Theorem qqh0 34020
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh0 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))

Proof of Theorem qqh0
StepHypRef Expression
1 zssq 12858 . . . 4 ℤ ⊆ ℚ
2 0z 12488 . . . 4 0 ∈ ℤ
31, 2sselii 3927 . . 3 0 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 34019 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
83, 7mpan2 691 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
9 1z 12510 . . . . . . . . . . 11 1 ∈ ℤ
10 gcd0id 16434 . . . . . . . . . . 11 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
119, 10ax-mp 5 . . . . . . . . . 10 (0 gcd 1) = (abs‘1)
12 abs1 15208 . . . . . . . . . 10 (abs‘1) = 1
1311, 12eqtri 2756 . . . . . . . . 9 (0 gcd 1) = 1
14 0cn 11113 . . . . . . . . . . 11 0 ∈ ℂ
1514div1i 11858 . . . . . . . . . 10 (0 / 1) = 0
1615eqcomi 2742 . . . . . . . . 9 0 = (0 / 1)
1713, 16pm3.2i 470 . . . . . . . 8 ((0 gcd 1) = 1 ∧ 0 = (0 / 1))
18 1nn 12145 . . . . . . . . 9 1 ∈ ℕ
19 qnumdenbi 16659 . . . . . . . . 9 ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)))
203, 2, 18, 19mp3an 1463 . . . . . . . 8 (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))
2117, 20mpbi 230 . . . . . . 7 ((numer‘0) = 0 ∧ (denom‘0) = 1)
2221simpli 483 . . . . . 6 (numer‘0) = 0
2322fveq2i 6833 . . . . 5 (𝐿‘(numer‘0)) = (𝐿‘0)
2421simpri 485 . . . . . 6 (denom‘0) = 1
2524fveq2i 6833 . . . . 5 (𝐿‘(denom‘0)) = (𝐿‘1)
2623, 25oveq12i 7366 . . . 4 ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1))
27 drngring 20655 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
28 eqid 2733 . . . . . . . 8 (0g𝑅) = (0g𝑅)
296, 28zrh0 21454 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
30 eqid 2733 . . . . . . . 8 (1r𝑅) = (1r𝑅)
316, 30zrh1 21453 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
3229, 31oveq12d 7372 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
3327, 32syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
34 drnggrp 20658 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
354, 28grpidcl 18882 . . . . . . 7 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
3634, 35syl 17 . . . . . 6 (𝑅 ∈ DivRing → (0g𝑅) ∈ 𝐵)
374, 5, 30dvr1 20329 . . . . . 6 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3827, 36, 37syl2anc 584 . . . . 5 (𝑅 ∈ DivRing → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3933, 38eqtrd 2768 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g𝑅))
4026, 39eqtrid 2780 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
4140adantr 480 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
428, 41eqtrd 2768 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   / cdiv 11783  cn 12134  cz 12477  cq 12850  abscabs 15145   gcd cgcd 16409  numercnumer 16648  denomcdenom 16649  Basecbs 17124  0gc0g 17347  Grpcgrp 18850  1rcur 20103  Ringcrg 20155  /rcdvr 20322  DivRingcdr 20648  ℤRHomczrh 21440  chrcchr 21442  ℚHomcqqh 34006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-fz 13412  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-gcd 16410  df-numer 16650  df-denom 16651  df-gz 16846  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-od 19444  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-subrng 20465  df-subrg 20489  df-drng 20650  df-cnfld 21296  df-zring 21388  df-zrh 21444  df-chr 21446  df-qqh 34007
This theorem is referenced by:  qqhcn  34027  rrh0  34051
  Copyright terms: Public domain W3C validator