Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version |
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh0 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12625 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 0z 12260 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | sselii 3914 | . . 3 ⊢ 0 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 31833 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
8 | 3, 7 | mpan2 687 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
9 | 1z 12280 | . . . . . . . . . . 11 ⊢ 1 ∈ ℤ | |
10 | gcd0id 16154 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (0 gcd 1) = (abs‘1)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0 gcd 1) = (abs‘1) |
12 | abs1 14937 | . . . . . . . . . 10 ⊢ (abs‘1) = 1 | |
13 | 11, 12 | eqtri 2766 | . . . . . . . . 9 ⊢ (0 gcd 1) = 1 |
14 | 0cn 10898 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
15 | 14 | div1i 11633 | . . . . . . . . . 10 ⊢ (0 / 1) = 0 |
16 | 15 | eqcomi 2747 | . . . . . . . . 9 ⊢ 0 = (0 / 1) |
17 | 13, 16 | pm3.2i 470 | . . . . . . . 8 ⊢ ((0 gcd 1) = 1 ∧ 0 = (0 / 1)) |
18 | 1nn 11914 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
19 | qnumdenbi 16376 | . . . . . . . . 9 ⊢ ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))) | |
20 | 3, 2, 18, 19 | mp3an 1459 | . . . . . . . 8 ⊢ (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)) |
21 | 17, 20 | mpbi 229 | . . . . . . 7 ⊢ ((numer‘0) = 0 ∧ (denom‘0) = 1) |
22 | 21 | simpli 483 | . . . . . 6 ⊢ (numer‘0) = 0 |
23 | 22 | fveq2i 6759 | . . . . 5 ⊢ (𝐿‘(numer‘0)) = (𝐿‘0) |
24 | 21 | simpri 485 | . . . . . 6 ⊢ (denom‘0) = 1 |
25 | 24 | fveq2i 6759 | . . . . 5 ⊢ (𝐿‘(denom‘0)) = (𝐿‘1) |
26 | 23, 25 | oveq12i 7267 | . . . 4 ⊢ ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1)) |
27 | drngring 19913 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
28 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
29 | 6, 28 | zrh0 20627 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘0) = (0g‘𝑅)) |
30 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
31 | 6, 30 | zrh1 20626 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
32 | 29, 31 | oveq12d 7273 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
33 | 27, 32 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
34 | drnggrp 19914 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | |
35 | 4, 28 | grpidcl 18522 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ 𝐵) |
36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (0g‘𝑅) ∈ 𝐵) |
37 | 4, 5, 30 | dvr1 19846 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
38 | 27, 36, 37 | syl2anc 583 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
39 | 33, 38 | eqtrd 2778 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g‘𝑅)) |
40 | 26, 39 | syl5eq 2791 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
41 | 40 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
42 | 8, 41 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 / cdiv 11562 ℕcn 11903 ℤcz 12249 ℚcq 12617 abscabs 14873 gcd cgcd 16129 numercnumer 16365 denomcdenom 16366 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 1rcur 19652 Ringcrg 19698 /rcdvr 19839 DivRingcdr 19906 ℤRHomczrh 20613 chrcchr 20615 ℚHomcqqh 31822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-numer 16367 df-denom 16368 df-gz 16559 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-od 19051 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-subrg 19937 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-chr 20619 df-qqh 31823 |
This theorem is referenced by: qqhcn 31841 rrh0 31865 |
Copyright terms: Public domain | W3C validator |