Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh0 Structured version   Visualization version   GIF version

Theorem qqh0 31339
 Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh0 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))

Proof of Theorem qqh0
StepHypRef Expression
1 zssq 12347 . . . 4 ℤ ⊆ ℚ
2 0z 11984 . . . 4 0 ∈ ℤ
31, 2sselii 3915 . . 3 0 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 31338 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
83, 7mpan2 690 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
9 1z 12004 . . . . . . . . . . 11 1 ∈ ℤ
10 gcd0id 15861 . . . . . . . . . . 11 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
119, 10ax-mp 5 . . . . . . . . . 10 (0 gcd 1) = (abs‘1)
12 abs1 14653 . . . . . . . . . 10 (abs‘1) = 1
1311, 12eqtri 2824 . . . . . . . . 9 (0 gcd 1) = 1
14 0cn 10626 . . . . . . . . . . 11 0 ∈ ℂ
1514div1i 11361 . . . . . . . . . 10 (0 / 1) = 0
1615eqcomi 2810 . . . . . . . . 9 0 = (0 / 1)
1713, 16pm3.2i 474 . . . . . . . 8 ((0 gcd 1) = 1 ∧ 0 = (0 / 1))
18 1nn 11640 . . . . . . . . 9 1 ∈ ℕ
19 qnumdenbi 16078 . . . . . . . . 9 ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)))
203, 2, 18, 19mp3an 1458 . . . . . . . 8 (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))
2117, 20mpbi 233 . . . . . . 7 ((numer‘0) = 0 ∧ (denom‘0) = 1)
2221simpli 487 . . . . . 6 (numer‘0) = 0
2322fveq2i 6652 . . . . 5 (𝐿‘(numer‘0)) = (𝐿‘0)
2421simpri 489 . . . . . 6 (denom‘0) = 1
2524fveq2i 6652 . . . . 5 (𝐿‘(denom‘0)) = (𝐿‘1)
2623, 25oveq12i 7151 . . . 4 ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1))
27 drngring 19506 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
28 eqid 2801 . . . . . . . 8 (0g𝑅) = (0g𝑅)
296, 28zrh0 20211 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
30 eqid 2801 . . . . . . . 8 (1r𝑅) = (1r𝑅)
316, 30zrh1 20210 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
3229, 31oveq12d 7157 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
3327, 32syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
34 drnggrp 19507 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
354, 28grpidcl 18127 . . . . . . 7 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
3634, 35syl 17 . . . . . 6 (𝑅 ∈ DivRing → (0g𝑅) ∈ 𝐵)
374, 5, 30dvr1 19439 . . . . . 6 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3827, 36, 37syl2anc 587 . . . . 5 (𝑅 ∈ DivRing → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3933, 38eqtrd 2836 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g𝑅))
4026, 39syl5eq 2848 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
4140adantr 484 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
428, 41eqtrd 2836 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   / cdiv 11290  ℕcn 11629  ℤcz 11973  ℚcq 12340  abscabs 14589   gcd cgcd 15837  numercnumer 16067  denomcdenom 16068  Basecbs 16479  0gc0g 16709  Grpcgrp 18099  1rcur 19248  Ringcrg 19294  /rcdvr 19432  DivRingcdr 19499  ℤRHomczrh 20197  chrcchr 20199  ℚHomcqqh 31327 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15838  df-numer 16069  df-denom 16070  df-gz 16260  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-od 18652  df-cmn 18904  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19501  df-subrg 19530  df-cnfld 20096  df-zring 20168  df-zrh 20201  df-chr 20203  df-qqh 31328 This theorem is referenced by:  qqhcn  31346  rrh0  31370
 Copyright terms: Public domain W3C validator