Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh0 Structured version   Visualization version   GIF version

Theorem qqh0 33974
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh0 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))

Proof of Theorem qqh0
StepHypRef Expression
1 zssq 12915 . . . 4 ℤ ⊆ ℚ
2 0z 12540 . . . 4 0 ∈ ℤ
31, 2sselii 3943 . . 3 0 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 33973 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
83, 7mpan2 691 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))))
9 1z 12563 . . . . . . . . . . 11 1 ∈ ℤ
10 gcd0id 16489 . . . . . . . . . . 11 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
119, 10ax-mp 5 . . . . . . . . . 10 (0 gcd 1) = (abs‘1)
12 abs1 15263 . . . . . . . . . 10 (abs‘1) = 1
1311, 12eqtri 2752 . . . . . . . . 9 (0 gcd 1) = 1
14 0cn 11166 . . . . . . . . . . 11 0 ∈ ℂ
1514div1i 11910 . . . . . . . . . 10 (0 / 1) = 0
1615eqcomi 2738 . . . . . . . . 9 0 = (0 / 1)
1713, 16pm3.2i 470 . . . . . . . 8 ((0 gcd 1) = 1 ∧ 0 = (0 / 1))
18 1nn 12197 . . . . . . . . 9 1 ∈ ℕ
19 qnumdenbi 16714 . . . . . . . . 9 ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)))
203, 2, 18, 19mp3an 1463 . . . . . . . 8 (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))
2117, 20mpbi 230 . . . . . . 7 ((numer‘0) = 0 ∧ (denom‘0) = 1)
2221simpli 483 . . . . . 6 (numer‘0) = 0
2322fveq2i 6861 . . . . 5 (𝐿‘(numer‘0)) = (𝐿‘0)
2421simpri 485 . . . . . 6 (denom‘0) = 1
2524fveq2i 6861 . . . . 5 (𝐿‘(denom‘0)) = (𝐿‘1)
2623, 25oveq12i 7399 . . . 4 ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1))
27 drngring 20645 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
28 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
296, 28zrh0 21423 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘0) = (0g𝑅))
30 eqid 2729 . . . . . . . 8 (1r𝑅) = (1r𝑅)
316, 30zrh1 21422 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
3229, 31oveq12d 7405 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
3327, 32syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g𝑅) / (1r𝑅)))
34 drnggrp 20648 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
354, 28grpidcl 18897 . . . . . . 7 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
3634, 35syl 17 . . . . . 6 (𝑅 ∈ DivRing → (0g𝑅) ∈ 𝐵)
374, 5, 30dvr1 20316 . . . . . 6 ((𝑅 ∈ Ring ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3827, 36, 37syl2anc 584 . . . . 5 (𝑅 ∈ DivRing → ((0g𝑅) / (1r𝑅)) = (0g𝑅))
3933, 38eqtrd 2764 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g𝑅))
4026, 39eqtrid 2776 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
4140adantr 480 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g𝑅))
428, 41eqtrd 2764 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   / cdiv 11835  cn 12186  cz 12529  cq 12907  abscabs 15200   gcd cgcd 16464  numercnumer 16703  denomcdenom 16704  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  1rcur 20090  Ringcrg 20142  /rcdvr 20309  DivRingcdr 20638  ℤRHomczrh 21409  chrcchr 21411  ℚHomcqqh 33960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-chr 21415  df-qqh 33961
This theorem is referenced by:  qqhcn  33981  rrh0  34005
  Copyright terms: Public domain W3C validator