| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version | ||
| Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
| qqhval2.1 | ⊢ / = (/r‘𝑅) |
| qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqh0 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12915 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 0z 12540 | . . . 4 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | sselii 3943 | . . 3 ⊢ 0 ∈ ℚ |
| 4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 7 | 4, 5, 6 | qqhvval 33973 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
| 9 | 1z 12563 | . . . . . . . . . . 11 ⊢ 1 ∈ ℤ | |
| 10 | gcd0id 16489 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (0 gcd 1) = (abs‘1)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0 gcd 1) = (abs‘1) |
| 12 | abs1 15263 | . . . . . . . . . 10 ⊢ (abs‘1) = 1 | |
| 13 | 11, 12 | eqtri 2752 | . . . . . . . . 9 ⊢ (0 gcd 1) = 1 |
| 14 | 0cn 11166 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
| 15 | 14 | div1i 11910 | . . . . . . . . . 10 ⊢ (0 / 1) = 0 |
| 16 | 15 | eqcomi 2738 | . . . . . . . . 9 ⊢ 0 = (0 / 1) |
| 17 | 13, 16 | pm3.2i 470 | . . . . . . . 8 ⊢ ((0 gcd 1) = 1 ∧ 0 = (0 / 1)) |
| 18 | 1nn 12197 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 19 | qnumdenbi 16714 | . . . . . . . . 9 ⊢ ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))) | |
| 20 | 3, 2, 18, 19 | mp3an 1463 | . . . . . . . 8 ⊢ (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)) |
| 21 | 17, 20 | mpbi 230 | . . . . . . 7 ⊢ ((numer‘0) = 0 ∧ (denom‘0) = 1) |
| 22 | 21 | simpli 483 | . . . . . 6 ⊢ (numer‘0) = 0 |
| 23 | 22 | fveq2i 6861 | . . . . 5 ⊢ (𝐿‘(numer‘0)) = (𝐿‘0) |
| 24 | 21 | simpri 485 | . . . . . 6 ⊢ (denom‘0) = 1 |
| 25 | 24 | fveq2i 6861 | . . . . 5 ⊢ (𝐿‘(denom‘0)) = (𝐿‘1) |
| 26 | 23, 25 | oveq12i 7399 | . . . 4 ⊢ ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1)) |
| 27 | drngring 20645 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 28 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 29 | 6, 28 | zrh0 21423 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘0) = (0g‘𝑅)) |
| 30 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 31 | 6, 30 | zrh1 21422 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
| 32 | 29, 31 | oveq12d 7405 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
| 33 | 27, 32 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
| 34 | drnggrp 20648 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | |
| 35 | 4, 28 | grpidcl 18897 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ 𝐵) |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (0g‘𝑅) ∈ 𝐵) |
| 37 | 4, 5, 30 | dvr1 20316 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
| 38 | 27, 36, 37 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
| 39 | 33, 38 | eqtrd 2764 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g‘𝑅)) |
| 40 | 26, 39 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
| 41 | 40 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
| 42 | 8, 41 | eqtrd 2764 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 / cdiv 11835 ℕcn 12186 ℤcz 12529 ℚcq 12907 abscabs 15200 gcd cgcd 16464 numercnumer 16703 denomcdenom 16704 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 1rcur 20090 Ringcrg 20142 /rcdvr 20309 DivRingcdr 20638 ℤRHomczrh 21409 chrcchr 21411 ℚHomcqqh 33960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-numer 16705 df-denom 16706 df-gz 16901 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-od 19458 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-chr 21415 df-qqh 33961 |
| This theorem is referenced by: qqhcn 33981 rrh0 34005 |
| Copyright terms: Public domain | W3C validator |