MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs2 Structured version   Visualization version   GIF version

Theorem isdrs2 18024
Description: Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
drsdirfi.l = (le‘𝐾)
Assertion
Ref Expression
isdrs2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsprs 18021 . . 3 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
2 simpl 483 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐾 ∈ Dirset)
3 elinel1 4129 . . . . . . 7 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ 𝒫 𝐵)
43elpwid 4544 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
54adantl 482 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
6 elinel2 4130 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
76adantl 482 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
8 drsbn0.b . . . . . 6 𝐵 = (Base‘𝐾)
9 drsdirfi.l . . . . . 6 = (le‘𝐾)
108, 9drsdirfi 18023 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥𝐵𝑥 ∈ Fin) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
112, 5, 7, 10syl3anc 1370 . . . 4 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
1211ralrimiva 3103 . . 3 (𝐾 ∈ Dirset → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
131, 12jca 512 . 2 (𝐾 ∈ Dirset → (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
14 simpl 483 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Proset )
15 0elpw 5278 . . . . . . 7 ∅ ∈ 𝒫 𝐵
16 0fin 8954 . . . . . . 7 ∅ ∈ Fin
1715, 16elini 4127 . . . . . 6 ∅ ∈ (𝒫 𝐵 ∩ Fin)
18 raleq 3342 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ ∅ 𝑧 𝑦))
1918rexbidv 3226 . . . . . . 7 (𝑥 = ∅ → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2019rspcv 3557 . . . . . 6 (∅ ∈ (𝒫 𝐵 ∩ Fin) → (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2117, 20ax-mp 5 . . . . 5 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
22 rexn0 4441 . . . . 5 (∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦𝐵 ≠ ∅)
2321, 22syl 17 . . . 4 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦𝐵 ≠ ∅)
2423adantl 482 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐵 ≠ ∅)
25 raleq 3342 . . . . . . 7 (𝑥 = {𝑎, 𝑏} → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
2625rexbidv 3226 . . . . . 6 (𝑥 = {𝑎, 𝑏} → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
27 simplr 766 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
28 prelpwi 5363 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ 𝒫 𝐵)
29 prfi 9089 . . . . . . . . 9 {𝑎, 𝑏} ∈ Fin
3029a1i 11 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ Fin)
3128, 30elind 4128 . . . . . . 7 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3231adantl 482 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3326, 27, 32rspcdva 3562 . . . . 5 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦)
34 vex 3436 . . . . . . 7 𝑎 ∈ V
35 vex 3436 . . . . . . 7 𝑏 ∈ V
36 breq1 5077 . . . . . . 7 (𝑧 = 𝑎 → (𝑧 𝑦𝑎 𝑦))
37 breq1 5077 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 𝑦𝑏 𝑦))
3834, 35, 36, 37ralpr 4636 . . . . . 6 (∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ (𝑎 𝑦𝑏 𝑦))
3938rexbii 3181 . . . . 5 (∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4033, 39sylib 217 . . . 4 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4140ralrimivva 3123 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
428, 9isdrs 18019 . . 3 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦)))
4314, 24, 41, 42syl3anbrc 1342 . 2 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Dirset)
4413, 43impbii 208 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {cpr 4563   class class class wbr 5074  cfv 6433  Fincfn 8733  Basecbs 16912  lecple 16969   Proset cproset 18011  Dirsetcdrs 18012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-proset 18013  df-drs 18014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator