MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs2 Structured version   Visualization version   GIF version

Theorem isdrs2 17939
Description: Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
drsdirfi.l = (le‘𝐾)
Assertion
Ref Expression
isdrs2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsprs 17936 . . 3 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
2 simpl 482 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐾 ∈ Dirset)
3 elinel1 4125 . . . . . . 7 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ 𝒫 𝐵)
43elpwid 4541 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
54adantl 481 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
6 elinel2 4126 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
76adantl 481 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
8 drsbn0.b . . . . . 6 𝐵 = (Base‘𝐾)
9 drsdirfi.l . . . . . 6 = (le‘𝐾)
108, 9drsdirfi 17938 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥𝐵𝑥 ∈ Fin) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
112, 5, 7, 10syl3anc 1369 . . . 4 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
1211ralrimiva 3107 . . 3 (𝐾 ∈ Dirset → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
131, 12jca 511 . 2 (𝐾 ∈ Dirset → (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
14 simpl 482 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Proset )
15 0elpw 5273 . . . . . . 7 ∅ ∈ 𝒫 𝐵
16 0fin 8916 . . . . . . 7 ∅ ∈ Fin
1715, 16elini 4123 . . . . . 6 ∅ ∈ (𝒫 𝐵 ∩ Fin)
18 raleq 3333 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ ∅ 𝑧 𝑦))
1918rexbidv 3225 . . . . . . 7 (𝑥 = ∅ → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2019rspcv 3547 . . . . . 6 (∅ ∈ (𝒫 𝐵 ∩ Fin) → (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2117, 20ax-mp 5 . . . . 5 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
22 rexn0 4438 . . . . 5 (∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦𝐵 ≠ ∅)
2321, 22syl 17 . . . 4 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦𝐵 ≠ ∅)
2423adantl 481 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐵 ≠ ∅)
25 raleq 3333 . . . . . . 7 (𝑥 = {𝑎, 𝑏} → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
2625rexbidv 3225 . . . . . 6 (𝑥 = {𝑎, 𝑏} → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
27 simplr 765 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
28 prelpwi 5357 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ 𝒫 𝐵)
29 prfi 9019 . . . . . . . . 9 {𝑎, 𝑏} ∈ Fin
3029a1i 11 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ Fin)
3128, 30elind 4124 . . . . . . 7 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3231adantl 481 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3326, 27, 32rspcdva 3554 . . . . 5 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦)
34 vex 3426 . . . . . . 7 𝑎 ∈ V
35 vex 3426 . . . . . . 7 𝑏 ∈ V
36 breq1 5073 . . . . . . 7 (𝑧 = 𝑎 → (𝑧 𝑦𝑎 𝑦))
37 breq1 5073 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 𝑦𝑏 𝑦))
3834, 35, 36, 37ralpr 4633 . . . . . 6 (∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ (𝑎 𝑦𝑏 𝑦))
3938rexbii 3177 . . . . 5 (∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4033, 39sylib 217 . . . 4 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4140ralrimivva 3114 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
428, 9isdrs 17934 . . 3 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦)))
4314, 24, 41, 42syl3anbrc 1341 . 2 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Dirset)
4413, 43impbii 208 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {cpr 4560   class class class wbr 5070  cfv 6418  Fincfn 8691  Basecbs 16840  lecple 16895   Proset cproset 17926  Dirsetcdrs 17927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-proset 17928  df-drs 17929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator