MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs2 Structured version   Visualization version   GIF version

Theorem isdrs2 17207
Description: Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
drsdirfi.l = (le‘𝐾)
Assertion
Ref Expression
isdrs2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsprs 17204 . . 3 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
2 simpl 474 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐾 ∈ Dirset)
3 inss1 3992 . . . . . . . 8 (𝒫 𝐵 ∩ Fin) ⊆ 𝒫 𝐵
43sseli 3757 . . . . . . 7 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ 𝒫 𝐵)
54elpwid 4327 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥𝐵)
65adantl 473 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥𝐵)
7 inss2 3993 . . . . . . 7 (𝒫 𝐵 ∩ Fin) ⊆ Fin
87sseli 3757 . . . . . 6 (𝑥 ∈ (𝒫 𝐵 ∩ Fin) → 𝑥 ∈ Fin)
98adantl 473 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑥 ∈ Fin)
10 drsbn0.b . . . . . 6 𝐵 = (Base‘𝐾)
11 drsdirfi.l . . . . . 6 = (le‘𝐾)
1210, 11drsdirfi 17206 . . . . 5 ((𝐾 ∈ Dirset ∧ 𝑥𝐵𝑥 ∈ Fin) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
132, 6, 9, 12syl3anc 1490 . . . 4 ((𝐾 ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝐵 ∩ Fin)) → ∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
1413ralrimiva 3113 . . 3 (𝐾 ∈ Dirset → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
151, 14jca 507 . 2 (𝐾 ∈ Dirset → (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
16 simpl 474 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Proset )
17 0elpw 4992 . . . . . . 7 ∅ ∈ 𝒫 𝐵
18 0fin 8395 . . . . . . 7 ∅ ∈ Fin
19 elin 3958 . . . . . . 7 (∅ ∈ (𝒫 𝐵 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐵 ∧ ∅ ∈ Fin))
2017, 18, 19mpbir2an 702 . . . . . 6 ∅ ∈ (𝒫 𝐵 ∩ Fin)
21 raleq 3286 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ ∅ 𝑧 𝑦))
2221rexbidv 3199 . . . . . . 7 (𝑥 = ∅ → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2322rspcv 3457 . . . . . 6 (∅ ∈ (𝒫 𝐵 ∩ Fin) → (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
2420, 23ax-mp 5 . . . . 5 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
25 rexn0 4233 . . . . 5 (∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦𝐵 ≠ ∅)
2624, 25syl 17 . . . 4 (∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦𝐵 ≠ ∅)
2726adantl 473 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐵 ≠ ∅)
28 raleq 3286 . . . . . . 7 (𝑥 = {𝑎, 𝑏} → (∀𝑧𝑥 𝑧 𝑦 ↔ ∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
2928rexbidv 3199 . . . . . 6 (𝑥 = {𝑎, 𝑏} → (∃𝑦𝐵𝑧𝑥 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦))
30 simplr 785 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦)
31 prelpwi 5071 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ 𝒫 𝐵)
32 prfi 8442 . . . . . . . . 9 {𝑎, 𝑏} ∈ Fin
3332a1i 11 . . . . . . . 8 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ Fin)
3431, 33elind 3960 . . . . . . 7 ((𝑎𝐵𝑏𝐵) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3534adantl 473 . . . . . 6 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → {𝑎, 𝑏} ∈ (𝒫 𝐵 ∩ Fin))
3629, 30, 35rspcdva 3467 . . . . 5 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦)
37 vex 3353 . . . . . . 7 𝑎 ∈ V
38 vex 3353 . . . . . . 7 𝑏 ∈ V
39 breq1 4812 . . . . . . 7 (𝑧 = 𝑎 → (𝑧 𝑦𝑎 𝑦))
40 breq1 4812 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 𝑦𝑏 𝑦))
4137, 38, 39, 40ralpr 4394 . . . . . 6 (∀𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ (𝑎 𝑦𝑏 𝑦))
4241rexbii 3188 . . . . 5 (∃𝑦𝐵𝑧 ∈ {𝑎, 𝑏}𝑧 𝑦 ↔ ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4336, 42sylib 209 . . . 4 (((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) ∧ (𝑎𝐵𝑏𝐵)) → ∃𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4443ralrimivva 3118 . . 3 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦))
4510, 11isdrs 17202 . . 3 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝐵𝑦𝐵 (𝑎 𝑦𝑏 𝑦)))
4616, 27, 44, 45syl3anbrc 1443 . 2 ((𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦) → 𝐾 ∈ Dirset)
4715, 46impbii 200 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦𝐵𝑧𝑥 𝑧 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {cpr 4336   class class class wbr 4809  cfv 6068  Fincfn 8160  Basecbs 16132  lecple 16223   Proset cproset 17194  Dirsetcdrs 17195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-fin 8164  df-proset 17196  df-drs 17197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator