![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eroprf2 | Structured version Visualization version GIF version |
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
Ref | Expression |
---|---|
eroprf2 | ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 8863 | 1 ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3966 class class class wbr 5151 × cxp 5691 ⟶wf 6565 (class class class)co 7438 {coprab 7439 Er wer 8750 [cec 8751 / cqs 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-er 8753 df-ec 8755 df-qs 8759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |