| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eroprf2 | Structured version Visualization version GIF version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
| eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
| eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
| eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
| eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
| eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
| Ref | Expression |
|---|---|
| eroprf2 | ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
| 2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
| 3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
| 4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
| 5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
| 6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
| 7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
| 8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 8788 | 1 ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 ⟶wf 6507 (class class class)co 7387 {coprab 7388 Er wer 8668 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |