| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eroprf2 | Structured version Visualization version GIF version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| eropr2.1 | ⊢ 𝐽 = (𝐴 / ∼ ) |
| eropr2.2 | ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} |
| eropr2.3 | ⊢ (𝜑 → ∼ ∈ 𝑋) |
| eropr2.4 | ⊢ (𝜑 → ∼ Er 𝑈) |
| eropr2.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| eropr2.6 | ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) |
| eropr2.7 | ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) |
| Ref | Expression |
|---|---|
| eroprf2 | ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr2.1 | . 2 ⊢ 𝐽 = (𝐴 / ∼ ) | |
| 2 | eropr2.3 | . 2 ⊢ (𝜑 → ∼ ∈ 𝑋) | |
| 3 | eropr2.4 | . 2 ⊢ (𝜑 → ∼ Er 𝑈) | |
| 4 | eropr2.5 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | |
| 5 | eropr2.6 | . 2 ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) | |
| 6 | eropr2.7 | . 2 ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) | |
| 7 | eropr2.2 | . 2 ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} | |
| 8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 8742 | 1 ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3903 class class class wbr 5092 × cxp 5617 ⟶wf 6478 (class class class)co 7349 {coprab 7350 Er wer 8622 [cec 8623 / cqs 8624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-ec 8627 df-qs 8631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |