![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eroprf2 | Structured version Visualization version GIF version |
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
eropr2.1 | âĒ ð― = (ðī / âž ) |
eropr2.2 | âĒ âĻĢ = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðī ((ðĨ = [ð] ➠⧠ðĶ = [ð] âž ) ⧠ð§ = [(ð + ð)] âž )} |
eropr2.3 | âĒ (ð â âž â ð) |
eropr2.4 | âĒ (ð â âž Er ð) |
eropr2.5 | âĒ (ð â ðī â ð) |
eropr2.6 | âĒ (ð â + :(ðī Ã ðī)âķðī) |
eropr2.7 | âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðī ⧠ðĒ â ðī))) â ((ð âž ð ⧠ðĄ âž ðĒ) â (ð + ðĄ) âž (ð + ðĒ))) |
Ref | Expression |
---|---|
eroprf2 | âĒ (ð â âĻĢ :(ð― Ã ð―)âķð―) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr2.1 | . 2 âĒ ð― = (ðī / âž ) | |
2 | eropr2.3 | . 2 âĒ (ð â âž â ð) | |
3 | eropr2.4 | . 2 âĒ (ð â âž Er ð) | |
4 | eropr2.5 | . 2 âĒ (ð â ðī â ð) | |
5 | eropr2.6 | . 2 âĒ (ð â + :(ðī Ã ðī)âķðī) | |
6 | eropr2.7 | . 2 âĒ ((ð ⧠((ð â ðī ⧠ð â ðī) ⧠(ðĄ â ðī ⧠ðĒ â ðī))) â ((ð âž ð ⧠ðĄ âž ðĒ) â (ð + ðĄ) âž (ð + ðĒ))) | |
7 | eropr2.2 | . 2 âĒ âĻĢ = {âĻâĻðĨ, ðĶâĐ, ð§âĐ âĢ âð â ðī âð â ðī ((ðĨ = [ð] ➠⧠ðĶ = [ð] âž ) ⧠ð§ = [(ð + ð)] âž )} | |
8 | 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1 | eroprf 8808 | 1 âĒ (ð â âĻĢ :(ð― Ã ð―)âķð―) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 396 = wceq 1541 â wcel 2106 âwrex 3070 â wss 3948 class class class wbr 5148 à cxp 5674 âķwf 6539 (class class class)co 7408 {coprab 7409 Er wer 8699 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-ec 8704 df-qs 8708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |