MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eroprf2 Structured version   Visualization version   GIF version

Theorem eroprf2 8792
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
eropr2.1 𝐽 = (𝐴 / )
eropr2.2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}
eropr2.3 (𝜑𝑋)
eropr2.4 (𝜑 Er 𝑈)
eropr2.5 (𝜑𝐴𝑈)
eropr2.6 (𝜑+ :(𝐴 × 𝐴)⟶𝐴)
eropr2.7 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))
Assertion
Ref Expression
eroprf2 (𝜑 :(𝐽 × 𝐽)⟶𝐽)
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝑋,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝑋(𝑥,𝑦)

Proof of Theorem eroprf2
StepHypRef Expression
1 eropr2.1 . 2 𝐽 = (𝐴 / )
2 eropr2.3 . 2 (𝜑𝑋)
3 eropr2.4 . 2 (𝜑 Er 𝑈)
4 eropr2.5 . 2 (𝜑𝐴𝑈)
5 eropr2.6 . 2 (𝜑+ :(𝐴 × 𝐴)⟶𝐴)
6 eropr2.7 . 2 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))
7 eropr2.2 . 2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}
81, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 2, 2, 1eroprf 8790 1 (𝜑 :(𝐽 × 𝐽)⟶𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3916   class class class wbr 5109   × cxp 5638  wf 6509  (class class class)co 7389  {coprab 7390   Er wer 8670  [cec 8671   / cqs 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-er 8673  df-ec 8675  df-qs 8679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator