| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmres3 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| eldmres3 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres2 38237 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅))) | |
| 2 | n0 4312 | . . 3 ⊢ ([𝐵]𝑅 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ [𝐵]𝑅) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 ≠ ∅) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)) |
| 4 | 1, 3 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ [𝐵]𝑅 ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 dom cdm 5631 ↾ cres 5633 [cec 8646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 |
| This theorem is referenced by: eldmxrncnvepres 38369 |
| Copyright terms: Public domain | W3C validator |