Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres3 Structured version   Visualization version   GIF version

Theorem eldmres3 38319
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eldmres3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅)))

Proof of Theorem eldmres3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres2 38318 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)))
2 n0 4300 . . 3 ([𝐵]𝑅 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ [𝐵]𝑅)
32anbi2i 623 . 2 ((𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅))
41, 3bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111  wne 2928  c0 4280  dom cdm 5614  cres 5616  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by:  eldmxrncnvepres  38450
  Copyright terms: Public domain W3C validator