Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres3 Structured version   Visualization version   GIF version

Theorem eldmres3 38238
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
eldmres3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅)))

Proof of Theorem eldmres3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres2 38237 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅)))
2 n0 4312 . . 3 ([𝐵]𝑅 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ [𝐵]𝑅)
32anbi2i 623 . 2 ((𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅) ↔ (𝐵𝐴 ∧ ∃𝑦 𝑦 ∈ [𝐵]𝑅))
41, 3bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ [𝐵]𝑅 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2925  c0 4292  dom cdm 5631  cres 5633  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650
This theorem is referenced by:  eldmxrncnvepres  38369
  Copyright terms: Public domain W3C validator