| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funressndmfvrn | Structured version Visualization version GIF version | ||
| Description: The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| funressndmfvrn | ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹) | |
| 2 | fvressn 7095 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹‘𝐴)) |
| 4 | eldmressnsn 5972 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | |
| 5 | fvelrn 7009 | . . . 4 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴})) | |
| 6 | 4, 5 | sylan2 593 | . . 3 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴})) |
| 7 | 3, 6 | eqeltrrd 2832 | . 2 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran (𝐹 ↾ {𝐴})) |
| 8 | fvrnressn 7094 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ((𝐹‘𝐴) ∈ ran (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) ∈ ran 𝐹)) | |
| 9 | 1, 7, 8 | sylc 65 | 1 ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 dom cdm 5614 ran crn 5615 ↾ cres 5616 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: dfatelrn 47230 |
| Copyright terms: Public domain | W3C validator |