Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmfvrn Structured version   Visualization version   GIF version

Theorem funressndmfvrn 47061
Description: The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.)
Assertion
Ref Expression
funressndmfvrn ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmfvrn
StepHypRef Expression
1 simpr 484 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
2 fvressn 7181 . . . 4 (𝐴 ∈ dom 𝐹 → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
32adantl 481 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
4 eldmressnsn 6041 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
5 fvelrn 7095 . . . 4 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
64, 5sylan2 593 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
73, 6eqeltrrd 2841 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}))
8 fvrnressn 7180 . 2 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}) → (𝐹𝐴) ∈ ran 𝐹))
91, 7, 8sylc 65 1 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4625  dom cdm 5684  ran crn 5685  cres 5686  Fun wfun 6554  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568
This theorem is referenced by:  dfatelrn  47148
  Copyright terms: Public domain W3C validator