Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmfvrn Structured version   Visualization version   GIF version

Theorem funressndmfvrn 46349
Description: The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.)
Assertion
Ref Expression
funressndmfvrn ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmfvrn
StepHypRef Expression
1 simpr 484 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
2 fvressn 7165 . . . 4 (𝐴 ∈ dom 𝐹 → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
32adantl 481 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
4 eldmressnsn 6022 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
5 fvelrn 7080 . . . 4 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
64, 5sylan2 592 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
73, 6eqeltrrd 2829 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}))
8 fvrnressn 7164 . 2 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}) → (𝐹𝐴) ∈ ran 𝐹))
91, 7, 8sylc 65 1 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {csn 4624  dom cdm 5672  ran crn 5673  cres 5674  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  dfatelrn  46434
  Copyright terms: Public domain W3C validator