Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmfvrn Structured version   Visualization version   GIF version

Theorem funressndmfvrn 44425
Description: The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.)
Assertion
Ref Expression
funressndmfvrn ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmfvrn
StepHypRef Expression
1 simpr 484 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
2 fvressn 7016 . . . 4 (𝐴 ∈ dom 𝐹 → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
32adantl 481 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) = (𝐹𝐴))
4 eldmressnsn 5923 . . . 4 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
5 fvelrn 6936 . . . 4 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom (𝐹 ↾ {𝐴})) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
64, 5sylan2 592 . . 3 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → ((𝐹 ↾ {𝐴})‘𝐴) ∈ ran (𝐹 ↾ {𝐴}))
73, 6eqeltrrd 2840 . 2 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}))
8 fvrnressn 7015 . 2 (𝐴 ∈ dom 𝐹 → ((𝐹𝐴) ∈ ran (𝐹 ↾ {𝐴}) → (𝐹𝐴) ∈ ran 𝐹))
91, 7, 8sylc 65 1 ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  dom cdm 5580  ran crn 5581  cres 5582  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  dfatelrn  44510
  Copyright terms: Public domain W3C validator