![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvn0fvelrnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvn0fvelrn 6921 as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fvn0fvelrnOLD | ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvfundmfvn0 6933 | . 2 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) | |
2 | eldmressnsn 6024 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | |
3 | fvelrn 7079 | . . . . . . 7 ⊢ ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → ((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋})) | |
4 | pm3.2 468 | . . . . . . 7 ⊢ (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))) |
6 | 5 | ex 411 | . . . . 5 ⊢ (Fun (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))) |
7 | 6 | com13 88 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))) |
8 | 2, 7 | mpd 15 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))) |
9 | 8 | imp 405 | . 2 ⊢ ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)) |
10 | fvressn 7165 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹‘𝑋)) | |
11 | 10 | eleq1d 2810 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ↔ (𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}))) |
12 | fvrnressn 7164 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → ((𝐹‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) | |
13 | 11, 12 | sylbid 239 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹‘𝑋) ∈ ran 𝐹)) |
14 | 13 | impcom 406 | . 2 ⊢ ((((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) ∈ ran 𝐹) |
15 | 1, 9, 14 | 3syl 18 | 1 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2930 ∅c0 4319 {csn 4625 dom cdm 5673 ran crn 5674 ↾ cres 5675 Fun wfun 6537 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |