MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0fvelrnOLD Structured version   Visualization version   GIF version

Theorem fvn0fvelrnOLD 7097
Description: Obsolete version of fvn0fvelrn 6851 as of 13-Jan-2025. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
fvn0fvelrnOLD ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)

Proof of Theorem fvn0fvelrnOLD
StepHypRef Expression
1 fvfundmfvn0 6863 . 2 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
2 eldmressnsn 5975 . . . 4 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
3 fvelrn 7010 . . . . . . 7 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → ((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}))
4 pm3.2 469 . . . . . . 7 (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
53, 4syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
65ex 412 . . . . 5 (Fun (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
76com13 88 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))))
82, 7mpd 15 . . 3 (𝑋 ∈ dom 𝐹 → (Fun (𝐹 ↾ {𝑋}) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹)))
98imp 406 . 2 ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹))
10 fvressn 7096 . . . . 5 (𝑋 ∈ dom 𝐹 → ((𝐹 ↾ {𝑋})‘𝑋) = (𝐹𝑋))
1110eleq1d 2813 . . . 4 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋})))
12 fvrnressn 7095 . . . 4 (𝑋 ∈ dom 𝐹 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1311, 12sylbid 240 . . 3 (𝑋 ∈ dom 𝐹 → (((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
1413impcom 407 . 2 ((((𝐹 ↾ {𝑋})‘𝑋) ∈ ran (𝐹 ↾ {𝑋}) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) ∈ ran 𝐹)
151, 9, 143syl 18 1 ((𝐹𝑋) ≠ ∅ → (𝐹𝑋) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  c0 4284  {csn 4577  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6476  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator