MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmressnsn Structured version   Visualization version   GIF version

Theorem dmressnsn 6015
Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
dmressnsn (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})

Proof of Theorem dmressnsn
StepHypRef Expression
1 dmres 6004 . 2 dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹)
2 snssi 4789 . . 3 (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹)
3 dfss2 3949 . . 3 ({𝐴} ⊆ dom 𝐹 ↔ ({𝐴} ∩ dom 𝐹) = {𝐴})
42, 3sylib 218 . 2 (𝐴 ∈ dom 𝐹 → ({𝐴} ∩ dom 𝐹) = {𝐴})
51, 4eqtrid 2783 1 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3930  wss 3931  {csn 4606  dom cdm 5659  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669  df-res 5671
This theorem is referenced by:  eldmressnsn  6016  funcoressn  47038  funressnfv  47039
  Copyright terms: Public domain W3C validator