| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmressnsn | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| dmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5983 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
| 2 | snssi 4772 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
| 3 | dfss2 3932 | . . 3 ⊢ ({𝐴} ⊆ dom 𝐹 ↔ ({𝐴} ∩ dom 𝐹) = {𝐴}) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ({𝐴} ∩ dom 𝐹) = {𝐴}) |
| 5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 {csn 4589 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-res 5650 |
| This theorem is referenced by: eldmressnsn 5995 funcoressn 47040 funressnfv 47041 |
| Copyright terms: Public domain | W3C validator |