![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmressnsn | Structured version Visualization version GIF version |
Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
dmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5993 | . 2 ⊢ dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹) | |
2 | snssi 4803 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹) | |
3 | df-ss 3957 | . . 3 ⊢ ({𝐴} ⊆ dom 𝐹 ↔ ({𝐴} ∩ dom 𝐹) = {𝐴}) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → ({𝐴} ∩ dom 𝐹) = {𝐴}) |
5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ⊆ wss 3940 {csn 4620 dom cdm 5666 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-dm 5676 df-res 5678 |
This theorem is referenced by: eldmressnsn 6014 funcoressn 46203 funressnfv 46204 |
Copyright terms: Public domain | W3C validator |