Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfv2ex | Structured version Visualization version GIF version |
Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
elfv2ex | ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) | |
2 | fv2prc 6796 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ((𝐹‘𝐵)‘𝐶) = ∅) | |
3 | 2 | eleq2d 2824 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) ↔ 𝐴 ∈ ∅)) |
4 | noel 4261 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (𝐴 ∈ ∅ → 𝐵 ∈ V) |
6 | 3, 5 | syl6bi 252 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) |
7 | 1, 6 | pm2.61i 182 | 1 ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |