![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfv2ex | Structured version Visualization version GIF version |
Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
elfv2ex | ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) | |
2 | fv2prc 6965 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ((𝐹‘𝐵)‘𝐶) = ∅) | |
3 | 2 | eleq2d 2830 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) ↔ 𝐴 ∈ ∅)) |
4 | noel 4360 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (𝐴 ∈ ∅ → 𝐵 ∈ V) |
6 | 3, 5 | biimtrdi 253 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) |
7 | 1, 6 | pm2.61i 182 | 1 ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |