MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv2ex Structured version   Visualization version   GIF version

Theorem elfv2ex 6865
Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
elfv2ex (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V)

Proof of Theorem elfv2ex
StepHypRef Expression
1 ax-1 6 . 2 (𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V))
2 fv2prc 6864 . . . 4 𝐵 ∈ V → ((𝐹𝐵)‘𝐶) = ∅)
32eleq2d 2817 . . 3 𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) ↔ 𝐴 ∈ ∅))
4 noel 4288 . . . 4 ¬ 𝐴 ∈ ∅
54pm2.21i 119 . . 3 (𝐴 ∈ ∅ → 𝐵 ∈ V)
63, 5biimtrdi 253 . 2 𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V))
71, 6pm2.61i 182 1 (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  Vcvv 3436  c0 4283  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-dm 5626  df-iota 6437  df-fv 6489
This theorem is referenced by:  2arwcat  49631
  Copyright terms: Public domain W3C validator