Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfv2ex | Structured version Visualization version GIF version |
Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
elfv2ex | ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) | |
2 | fv2prc 6814 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ((𝐹‘𝐵)‘𝐶) = ∅) | |
3 | 2 | eleq2d 2824 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) ↔ 𝐴 ∈ ∅)) |
4 | noel 4264 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (𝐴 ∈ ∅ → 𝐵 ∈ V) |
6 | 3, 5 | syl6bi 252 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) |
7 | 1, 6 | pm2.61i 182 | 1 ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |