MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv2ex Structured version   Visualization version   GIF version

Theorem elfv2ex 6927
Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
elfv2ex (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V)

Proof of Theorem elfv2ex
StepHypRef Expression
1 ax-1 6 . 2 (𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V))
2 fv2prc 6926 . . . 4 𝐵 ∈ V → ((𝐹𝐵)‘𝐶) = ∅)
32eleq2d 2821 . . 3 𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) ↔ 𝐴 ∈ ∅))
4 noel 4318 . . . 4 ¬ 𝐴 ∈ ∅
54pm2.21i 119 . . 3 (𝐴 ∈ ∅ → 𝐵 ∈ V)
63, 5biimtrdi 253 . 2 𝐵 ∈ V → (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V))
71, 6pm2.61i 182 1 (𝐴 ∈ ((𝐹𝐵)‘𝐶) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3464  c0 4313  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-dm 5669  df-iota 6489  df-fv 6544
This theorem is referenced by:  2arwcat  49444
  Copyright terms: Public domain W3C validator