| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfv2ex | Structured version Visualization version GIF version | ||
| Description: If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| elfv2ex | ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) | |
| 2 | fv2prc 6870 | . . . 4 ⊢ (¬ 𝐵 ∈ V → ((𝐹‘𝐵)‘𝐶) = ∅) | |
| 3 | 2 | eleq2d 2819 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) ↔ 𝐴 ∈ ∅)) |
| 4 | noel 4287 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 5 | 4 | pm2.21i 119 | . . 3 ⊢ (𝐴 ∈ ∅ → 𝐵 ∈ V) |
| 6 | 3, 5 | biimtrdi 253 | . 2 ⊢ (¬ 𝐵 ∈ V → (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V)) |
| 7 | 1, 6 | pm2.61i 182 | 1 ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: 2arwcat 49725 |
| Copyright terms: Public domain | W3C validator |