![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fv2prc | Structured version Visualization version GIF version |
Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
fv2prc | ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprc 6494 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
2 | 1 | fveq1d 6503 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = (∅‘𝐵)) |
3 | 0fv 6541 | . 2 ⊢ (∅‘𝐵) = ∅ | |
4 | 2, 3 | syl6eq 2830 | 1 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1507 ∈ wcel 2050 Vcvv 3415 ∅c0 4180 ‘cfv 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-nul 5068 ax-pow 5120 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-dm 5418 df-iota 6154 df-fv 6198 |
This theorem is referenced by: elfv2ex 6543 itunitc1 9642 sralem 19674 srasca 19678 sravsca 19679 sraip 19680 |
Copyright terms: Public domain | W3C validator |