MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2prc Structured version   Visualization version   GIF version

Theorem fv2prc 6814
Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
fv2prc 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)

Proof of Theorem fv2prc
StepHypRef Expression
1 fvprc 6766 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
21fveq1d 6776 . 2 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = (∅‘𝐵))
3 0fv 6813 . 2 (∅‘𝐵) = ∅
42, 3eqtrdi 2794 1 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441
This theorem is referenced by:  elfv2ex  6815  itunitc1  10176  sralem  20439  sralemOLD  20440  srasca  20447  srascaOLD  20448  sravsca  20449  sravscaOLD  20450  sraip  20451
  Copyright terms: Public domain W3C validator