MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2prc Structured version   Visualization version   GIF version

Theorem fv2prc 6757
Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
fv2prc 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)

Proof of Theorem fv2prc
StepHypRef Expression
1 fvprc 6709 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
21fveq1d 6719 . 2 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = (∅‘𝐵))
3 0fv 6756 . 2 (∅‘𝐵) = ∅
42, 3eqtrdi 2794 1 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-dm 5561  df-iota 6338  df-fv 6388
This theorem is referenced by:  elfv2ex  6758  itunitc1  10034  sralem  20214  srasca  20218  sravsca  20219  sraip  20220
  Copyright terms: Public domain W3C validator