MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2prc Structured version   Visualization version   GIF version

Theorem fv2prc 6906
Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.)
Assertion
Ref Expression
fv2prc 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)

Proof of Theorem fv2prc
StepHypRef Expression
1 fvprc 6853 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
21fveq1d 6863 . 2 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = (∅‘𝐵))
3 0fv 6905 . 2 (∅‘𝐵) = ∅
42, 3eqtrdi 2781 1 𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522
This theorem is referenced by:  elfv2ex  6907  itunitc1  10380  sralem  21090  srasca  21094  sravsca  21095  sraip  21096
  Copyright terms: Public domain W3C validator