Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fv2prc | Structured version Visualization version GIF version |
Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
fv2prc | ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprc 6709 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
2 | 1 | fveq1d 6719 | . 2 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = (∅‘𝐵)) |
3 | 0fv 6756 | . 2 ⊢ (∅‘𝐵) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | 1 ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-dm 5561 df-iota 6338 df-fv 6388 |
This theorem is referenced by: elfv2ex 6758 itunitc1 10034 sralem 20214 srasca 20218 sravsca 20219 sraip 20220 |
Copyright terms: Public domain | W3C validator |