Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveqres | Structured version Visualization version GIF version |
Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
fveqres | ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6683 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | fvres 6683 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | eqeq12d 2775 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |
4 | 3 | biimprd 251 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
5 | nfvres 6700 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
6 | nfvres 6700 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = ∅) | |
7 | 5, 6 | eqtr4d 2797 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
9 | 4, 8 | pm2.61i 185 | 1 ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2112 ∅c0 4228 ↾ cres 5531 ‘cfv 6341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-xp 5535 df-dm 5539 df-res 5541 df-iota 6300 df-fv 6349 |
This theorem is referenced by: fvresex 7672 |
Copyright terms: Public domain | W3C validator |