MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqres Structured version   Visualization version   GIF version

Theorem fveqres 6905
Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
fveqres ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴))

Proof of Theorem fveqres
StepHypRef Expression
1 fvres 6877 . . . 4 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
2 fvres 6877 . . . 4 (𝐴𝐵 → ((𝐺𝐵)‘𝐴) = (𝐺𝐴))
31, 2eqeq12d 2745 . . 3 (𝐴𝐵 → (((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴) ↔ (𝐹𝐴) = (𝐺𝐴)))
43biimprd 248 . 2 (𝐴𝐵 → ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴)))
5 nfvres 6899 . . . 4 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
6 nfvres 6899 . . . 4 𝐴𝐵 → ((𝐺𝐵)‘𝐴) = ∅)
75, 6eqtr4d 2767 . . 3 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴))
87a1d 25 . 2 𝐴𝐵 → ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴)))
94, 8pm2.61i 182 1 ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐵)‘𝐴) = ((𝐺𝐵)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4296  cres 5640  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-res 5650  df-iota 6464  df-fv 6519
This theorem is referenced by:  fvresex  7938
  Copyright terms: Public domain W3C validator