![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveqres | Structured version Visualization version GIF version |
Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
fveqres | ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6910 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
2 | fvres 6910 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | eqeq12d 2744 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) |
4 | 3 | biimprd 247 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
5 | nfvres 6932 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
6 | nfvres 6932 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐺 ↾ 𝐵)‘𝐴) = ∅) | |
7 | 5, 6 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
8 | 7 | a1d 25 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴))) |
9 | 4, 8 | pm2.61i 182 | 1 ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4318 ↾ cres 5674 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-dm 5682 df-res 5684 df-iota 6494 df-fv 6550 |
This theorem is referenced by: fvresex 7957 |
Copyright terms: Public domain | W3C validator |