Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupxr Structured version   Visualization version   GIF version

Theorem smfsupxr 46737
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupxr.n 𝑛𝐹
smfsupxr.x 𝑥𝐹
smfsupxr.m (𝜑𝑀 ∈ ℤ)
smfsupxr.z 𝑍 = (ℤ𝑀)
smfsupxr.s (𝜑𝑆 ∈ SAlg)
smfsupxr.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupxr.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
smfsupxr.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
Assertion
Ref Expression
smfsupxr (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝑍,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfsupxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smfsupxr.g . . . 4 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )))
3 smfsupxr.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
43a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
5 nfv 1913 . . . . . . . 8 𝑛𝜑
6 nfcv 2908 . . . . . . . . 9 𝑛𝑥
7 nfii1 5052 . . . . . . . . 9 𝑛 𝑛𝑍 dom (𝐹𝑛)
86, 7nfel 2923 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
95, 8nfan 1898 . . . . . . 7 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
10 smfsupxr.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 smfsupxr.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1210, 11uzn0d 45340 . . . . . . . 8 (𝜑𝑍 ≠ ∅)
1312adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → 𝑍 ≠ ∅)
14 smfsupxr.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
1514adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
16 smfsupxr.f . . . . . . . . . . 11 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1716ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
18 eqid 2740 . . . . . . . . . 10 dom (𝐹𝑛) = dom (𝐹𝑛)
1915, 17, 18smff 46653 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2019adantlr 714 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
21 eliinid 45013 . . . . . . . . 9 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2221adantll 713 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 22ffvelcdmd 7119 . . . . . . 7 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
249, 13, 23supxrre3rnmpt 45344 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
2524rabbidva 3450 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
264, 25eqtrd 2780 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
27 nfmpt1 5274 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
2827nfrn 5977 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
29 nfcv 2908 . . . . . . . . . . 11 𝑛*
30 nfcv 2908 . . . . . . . . . . 11 𝑛 <
3128, 29, 30nfsup 9520 . . . . . . . . . 10 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )
32 nfcv 2908 . . . . . . . . . 10 𝑛
3331, 32nfel 2923 . . . . . . . . 9 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ
3433, 7nfrabw 3483 . . . . . . . 8 𝑛{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
353, 34nfcxfr 2906 . . . . . . 7 𝑛𝐷
366, 35nfel 2923 . . . . . 6 𝑛 𝑥𝐷
375, 36nfan 1898 . . . . 5 𝑛(𝜑𝑥𝐷)
3812adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
3919adantlr 714 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
40 nfcv 2908 . . . . . . . . . . . 12 𝑥𝑍
41 smfsupxr.x . . . . . . . . . . . . . 14 𝑥𝐹
42 nfcv 2908 . . . . . . . . . . . . . 14 𝑥𝑛
4341, 42nffv 6930 . . . . . . . . . . . . 13 𝑥(𝐹𝑛)
4443nfdm 5976 . . . . . . . . . . . 12 𝑥dom (𝐹𝑛)
4540, 44nfiin 5047 . . . . . . . . . . 11 𝑥 𝑛𝑍 dom (𝐹𝑛)
4645ssrab2f 45019 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑛𝑍 dom (𝐹𝑛)
473, 46eqsstri 4043 . . . . . . . . 9 𝐷 𝑛𝑍 dom (𝐹𝑛)
48 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
4947, 48sselid 4006 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
5049, 21sylan 579 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5150adantll 713 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5239, 51ffvelcdmd 7119 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5348, 3eleqtrdi 2854 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
54 rabidim2 45004 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5553, 54syl 17 . . . . . . 7 (𝑥𝐷 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5655adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5749adantl 481 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
5857, 24syldan 590 . . . . . 6 ((𝜑𝑥𝐷) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
5956, 58mpbid 232 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6037, 38, 52, 59supxrrernmpt 45336 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6126, 60mpteq12dva 5255 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
622, 61eqtrd 2780 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
63 smfsupxr.n . . 3 𝑛𝐹
64 eqid 2740 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
65 eqid 2740 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6663, 41, 10, 11, 14, 16, 64, 65smfsup 46735 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
6762, 66eqeltrd 2844 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wne 2946  wral 3067  wrex 3076  {crab 3443  c0 4352   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  wf 6569  cfv 6573  supcsup 9509  cr 11183  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-ico 13413  df-fl 13843  df-rest 17482  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234  df-smblfn 46617
This theorem is referenced by:  smflimsuplem3  46743
  Copyright terms: Public domain W3C validator