Step | Hyp | Ref
| Expression |
1 | | smfsupxr.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, <
)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, <
))) |
3 | | smfsupxr.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ} |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
5 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
6 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑥 |
7 | | nfii1 4959 |
. . . . . . . . 9
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
8 | 6, 7 | nfel 2921 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
9 | 5, 8 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
10 | | smfsupxr.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | | smfsupxr.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
12 | 10, 11 | uzn0d 42965 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ≠ ∅) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → 𝑍 ≠ ∅) |
14 | | smfsupxr.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ SAlg) |
15 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
16 | | smfsupxr.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
17 | 16 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢ dom
(𝐹‘𝑛) = dom (𝐹‘𝑛) |
19 | 15, 17, 18 | smff 44268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
20 | 19 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
21 | | eliinid 42661 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
22 | 21 | adantll 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
23 | 20, 22 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
24 | 9, 13, 23 | supxrre3rnmpt 42969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) → (sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ ∃𝑦
∈ ℝ ∀𝑛
∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
25 | 24 | rabbidva 3413 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦}) |
26 | 4, 25 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦}) |
27 | | nfmpt1 5182 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)) |
28 | 27 | nfrn 5861 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛ran
(𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)) |
29 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛ℝ* |
30 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛
< |
31 | 28, 29, 30 | nfsup 9210 |
. . . . . . . . . 10
⊢
Ⅎ𝑛sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, <
) |
32 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑛ℝ |
33 | 31, 32 | nfel 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑛sup(ran
(𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ |
34 | 33, 7 | nfrabw 3318 |
. . . . . . . 8
⊢
Ⅎ𝑛{𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ} |
35 | 3, 34 | nfcxfr 2905 |
. . . . . . 7
⊢
Ⅎ𝑛𝐷 |
36 | 6, 35 | nfel 2921 |
. . . . . 6
⊢
Ⅎ𝑛 𝑥 ∈ 𝐷 |
37 | 5, 36 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
38 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ≠ ∅) |
39 | 19 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
40 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑍 |
41 | | smfsupxr.x |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝐹 |
42 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝑛 |
43 | 41, 42 | nffv 6784 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝐹‘𝑛) |
44 | 43 | nfdm 5860 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥dom
(𝐹‘𝑛) |
45 | 40, 44 | nfiin 4955 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
46 | 45 | ssrab2f 42666 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
47 | 3, 46 | eqsstri 3955 |
. . . . . . . . 9
⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
48 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐷) |
49 | 47, 48 | sselid 3919 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
50 | 49, 21 | sylan 580 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
51 | 50 | adantll 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
52 | 39, 51 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
53 | 48, 3 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
54 | | rabidim2 42652 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ} → sup(ran (𝑛
∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ) |
56 | 55 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ) |
57 | 49 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
58 | 57, 24 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ ∃𝑦
∈ ℝ ∀𝑛
∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
59 | 56, 58 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
60 | 37, 38, 52, 59 | supxrrernmpt 42961 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) = sup(ran
(𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
61 | 26, 60 | mpteq12dva 5163 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
62 | 2, 61 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ))) |
63 | | smfsupxr.n |
. . 3
⊢
Ⅎ𝑛𝐹 |
64 | | eqid 2738 |
. . 3
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
65 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
66 | 63, 41, 10, 11, 14, 16, 64, 65 | smfsup 44347 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
67 | 62, 66 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |