Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupxr Structured version   Visualization version   GIF version

Theorem smfsupxr 42959
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupxr.n 𝑛𝐹
smfsupxr.x 𝑥𝐹
smfsupxr.m (𝜑𝑀 ∈ ℤ)
smfsupxr.z 𝑍 = (ℤ𝑀)
smfsupxr.s (𝜑𝑆 ∈ SAlg)
smfsupxr.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupxr.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
smfsupxr.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
Assertion
Ref Expression
smfsupxr (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝑍,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfsupxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smfsupxr.g . . . 4 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )))
3 smfsupxr.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
43a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
5 nfv 1908 . . . . . . . 8 𝑛𝜑
6 nfcv 2981 . . . . . . . . 9 𝑛𝑥
7 nfii1 4950 . . . . . . . . 9 𝑛 𝑛𝑍 dom (𝐹𝑛)
86, 7nfel 2996 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
95, 8nfan 1893 . . . . . . 7 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
10 smfsupxr.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 smfsupxr.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1210, 11uzn0d 41567 . . . . . . . 8 (𝜑𝑍 ≠ ∅)
1312adantr 481 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → 𝑍 ≠ ∅)
14 smfsupxr.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
1514adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
16 smfsupxr.f . . . . . . . . . . 11 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1716ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
18 eqid 2825 . . . . . . . . . 10 dom (𝐹𝑛) = dom (𝐹𝑛)
1915, 17, 18smff 42878 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2019adantlr 711 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
21 eliinid 41246 . . . . . . . . 9 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2221adantll 710 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 22ffvelrnd 6847 . . . . . . 7 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
249, 13, 23supxrre3rnmpt 41571 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
2524rabbidva 3483 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
264, 25eqtrd 2860 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
27 nfmpt1 5160 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
2827nfrn 5822 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
29 nfcv 2981 . . . . . . . . . . 11 𝑛*
30 nfcv 2981 . . . . . . . . . . 11 𝑛 <
3128, 29, 30nfsup 8907 . . . . . . . . . 10 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )
32 nfcv 2981 . . . . . . . . . 10 𝑛
3331, 32nfel 2996 . . . . . . . . 9 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ
3433, 7nfrab 3391 . . . . . . . 8 𝑛{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
353, 34nfcxfr 2979 . . . . . . 7 𝑛𝐷
366, 35nfel 2996 . . . . . 6 𝑛 𝑥𝐷
375, 36nfan 1893 . . . . 5 𝑛(𝜑𝑥𝐷)
3812adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
3919adantlr 711 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
40 nfcv 2981 . . . . . . . . . . . 12 𝑥𝑍
41 smfsupxr.x . . . . . . . . . . . . . 14 𝑥𝐹
42 nfcv 2981 . . . . . . . . . . . . . 14 𝑥𝑛
4341, 42nffv 6676 . . . . . . . . . . . . 13 𝑥(𝐹𝑛)
4443nfdm 5821 . . . . . . . . . . . 12 𝑥dom (𝐹𝑛)
4540, 44nfiin 4946 . . . . . . . . . . 11 𝑥 𝑛𝑍 dom (𝐹𝑛)
4645ssrab2f 41252 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑛𝑍 dom (𝐹𝑛)
473, 46eqsstri 4004 . . . . . . . . 9 𝐷 𝑛𝑍 dom (𝐹𝑛)
48 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
4947, 48sseldi 3968 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
5049, 21sylan 580 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5150adantll 710 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5239, 51ffvelrnd 6847 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5348, 3syl6eleq 2927 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
54 rabidim2 41237 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5553, 54syl 17 . . . . . . 7 (𝑥𝐷 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5655adantl 482 . . . . . 6 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5749adantl 482 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
5857, 24syldan 591 . . . . . 6 ((𝜑𝑥𝐷) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
5956, 58mpbid 233 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6037, 38, 52, 59supxrrernmpt 41563 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6126, 60mpteq12dva 5146 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
622, 61eqtrd 2860 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
63 smfsupxr.n . . 3 𝑛𝐹
64 eqid 2825 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
65 eqid 2825 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6663, 41, 10, 11, 14, 16, 64, 65smfsup 42957 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
6762, 66eqeltrd 2917 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wnfc 2965  wne 3020  wral 3142  wrex 3143  {crab 3146  c0 4294   ciin 4917   class class class wbr 5062  cmpt 5142  dom cdm 5553  ran crn 5554  wf 6347  cfv 6351  supcsup 8896  cr 10528  *cxr 10666   < clt 10667  cle 10668  cz 11973  cuz 12235  SAlgcsalg 42462  SMblFncsmblfn 42846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-ioo 12735  df-ioc 12736  df-ico 12737  df-fl 13155  df-rest 16689  df-topgen 16710  df-top 21421  df-bases 21473  df-salg 42463  df-salgen 42467  df-smblfn 42847
This theorem is referenced by:  smflimsuplem3  42965
  Copyright terms: Public domain W3C validator