Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsupxr Structured version   Visualization version   GIF version

Theorem smfsupxr 46821
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsupxr.n 𝑛𝐹
smfsupxr.x 𝑥𝐹
smfsupxr.m (𝜑𝑀 ∈ ℤ)
smfsupxr.z 𝑍 = (ℤ𝑀)
smfsupxr.s (𝜑𝑆 ∈ SAlg)
smfsupxr.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsupxr.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
smfsupxr.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
Assertion
Ref Expression
smfsupxr (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝑍,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smfsupxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smfsupxr.g . . . 4 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )))
3 smfsupxr.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
43a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
5 nfv 1914 . . . . . . . 8 𝑛𝜑
6 nfcv 2892 . . . . . . . . 9 𝑛𝑥
7 nfii1 4996 . . . . . . . . 9 𝑛 𝑛𝑍 dom (𝐹𝑛)
86, 7nfel 2907 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
95, 8nfan 1899 . . . . . . 7 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
10 smfsupxr.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 smfsupxr.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
1210, 11uzn0d 45428 . . . . . . . 8 (𝜑𝑍 ≠ ∅)
1312adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → 𝑍 ≠ ∅)
14 smfsupxr.s . . . . . . . . . . 11 (𝜑𝑆 ∈ SAlg)
1514adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
16 smfsupxr.f . . . . . . . . . . 11 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1716ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
18 eqid 2730 . . . . . . . . . 10 dom (𝐹𝑛) = dom (𝐹𝑛)
1915, 17, 18smff 46737 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2019adantlr 715 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
21 eliinid 45112 . . . . . . . . 9 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2221adantll 714 . . . . . . . 8 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 22ffvelcdmd 7060 . . . . . . 7 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
249, 13, 23supxrre3rnmpt 45432 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
2524rabbidva 3415 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
264, 25eqtrd 2765 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
27 nfmpt1 5209 . . . . . . . . . . . 12 𝑛(𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
2827nfrn 5919 . . . . . . . . . . 11 𝑛ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥))
29 nfcv 2892 . . . . . . . . . . 11 𝑛*
30 nfcv 2892 . . . . . . . . . . 11 𝑛 <
3128, 29, 30nfsup 9409 . . . . . . . . . 10 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )
32 nfcv 2892 . . . . . . . . . 10 𝑛
3331, 32nfel 2907 . . . . . . . . 9 𝑛sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ
3433, 7nfrabw 3446 . . . . . . . 8 𝑛{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ}
353, 34nfcxfr 2890 . . . . . . 7 𝑛𝐷
366, 35nfel 2907 . . . . . 6 𝑛 𝑥𝐷
375, 36nfan 1899 . . . . 5 𝑛(𝜑𝑥𝐷)
3812adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
3919adantlr 715 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
40 nfcv 2892 . . . . . . . . . . . 12 𝑥𝑍
41 smfsupxr.x . . . . . . . . . . . . . 14 𝑥𝐹
42 nfcv 2892 . . . . . . . . . . . . . 14 𝑥𝑛
4341, 42nffv 6871 . . . . . . . . . . . . 13 𝑥(𝐹𝑛)
4443nfdm 5918 . . . . . . . . . . . 12 𝑥dom (𝐹𝑛)
4540, 44nfiin 4991 . . . . . . . . . . 11 𝑥 𝑛𝑍 dom (𝐹𝑛)
4645ssrab2f 45118 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑛𝑍 dom (𝐹𝑛)
473, 46eqsstri 3996 . . . . . . . . 9 𝐷 𝑛𝑍 dom (𝐹𝑛)
48 id 22 . . . . . . . . 9 (𝑥𝐷𝑥𝐷)
4947, 48sselid 3947 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
5049, 21sylan 580 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5150adantll 714 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
5239, 51ffvelcdmd 7060 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5348, 3eleqtrdi 2839 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ})
54 rabidim2 45103 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5553, 54syl 17 . . . . . . 7 (𝑥𝐷 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5655adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ)
5749adantl 481 . . . . . . 7 ((𝜑𝑥𝐷) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
5857, 24syldan 591 . . . . . 6 ((𝜑𝑥𝐷) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
5956, 58mpbid 232 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
6037, 38, 52, 59supxrrernmpt 45424 . . . 4 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < ) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6126, 60mpteq12dva 5196 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
622, 61eqtrd 2765 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
63 smfsupxr.n . . 3 𝑛𝐹
64 eqid 2730 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
65 eqid 2730 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6663, 41, 10, 11, 14, 16, 64, 65smfsup 46819 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
6762, 66eqeltrd 2829 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2877  wne 2926  wral 3045  wrex 3054  {crab 3408  c0 4299   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  supcsup 9398  cr 11074  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ioc 13318  df-ico 13319  df-fl 13761  df-rest 17392  df-topgen 17413  df-top 22788  df-bases 22840  df-salg 46314  df-salgen 46318  df-smblfn 46701
This theorem is referenced by:  smflimsuplem3  46827
  Copyright terms: Public domain W3C validator