| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimf | Structured version Visualization version GIF version | ||
| Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4547, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
| Ref | Expression |
|---|---|
| elimf.1 | ⊢ 𝐺:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| elimf | ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6666 | . 2 ⊢ (𝐹 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐹:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 2 | feq1 6666 | . 2 ⊢ (𝐺 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐺:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 3 | elimf.1 | . 2 ⊢ 𝐺:𝐴⟶𝐵 | |
| 4 | 1, 2, 3 | elimhyp 4554 | 1 ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ifcif 4488 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: hosubcl 31702 hoaddcom 31703 hoaddass 31711 hocsubdir 31714 hoaddrid 31720 hodid 31721 ho0sub 31726 honegsub 31728 hoddi 31919 |
| Copyright terms: Public domain | W3C validator |