MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimf Structured version   Visualization version   GIF version

Theorem elimf 6736
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4589, when a special case 𝐺:𝐴𝐵 is provable, in order to convert 𝐹:𝐴𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
Hypothesis
Ref Expression
elimf.1 𝐺:𝐴𝐵
Assertion
Ref Expression
elimf if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵

Proof of Theorem elimf
StepHypRef Expression
1 feq1 6717 . 2 (𝐹 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐹:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
2 feq1 6717 . 2 (𝐺 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐺:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
3 elimf.1 . 2 𝐺:𝐴𝐵
41, 2, 3elimhyp 4596 1 if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ifcif 4531  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  hosubcl  31802  hoaddcom  31803  hoaddass  31811  hocsubdir  31814  hoaddrid  31820  hodid  31821  ho0sub  31826  honegsub  31828  hoddi  32019
  Copyright terms: Public domain W3C validator