| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimf | Structured version Visualization version GIF version | ||
| Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4535, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
| Ref | Expression |
|---|---|
| elimf.1 | ⊢ 𝐺:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| elimf | ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6637 | . 2 ⊢ (𝐹 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐹:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 2 | feq1 6637 | . 2 ⊢ (𝐺 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐺:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 3 | elimf.1 | . 2 ⊢ 𝐺:𝐴⟶𝐵 | |
| 4 | 1, 2, 3 | elimhyp 4542 | 1 ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ifcif 4476 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: hosubcl 31774 hoaddcom 31775 hoaddass 31783 hocsubdir 31786 hoaddrid 31792 hodid 31793 ho0sub 31798 honegsub 31800 hoddi 31991 |
| Copyright terms: Public domain | W3C validator |