![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimf | Structured version Visualization version GIF version |
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4545, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
Ref | Expression |
---|---|
elimf.1 | ⊢ 𝐺:𝐴⟶𝐵 |
Ref | Expression |
---|---|
elimf | ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 6650 | . 2 ⊢ (𝐹 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐹:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
2 | feq1 6650 | . 2 ⊢ (𝐺 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐺:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
3 | elimf.1 | . 2 ⊢ 𝐺:𝐴⟶𝐵 | |
4 | 1, 2, 3 | elimhyp 4552 | 1 ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ifcif 4487 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: hosubcl 30757 hoaddcom 30758 hoaddass 30766 hocsubdir 30769 hoaddid1 30775 hodid 30776 ho0sub 30781 honegsub 30783 hoddi 30974 |
Copyright terms: Public domain | W3C validator |