MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimf Structured version   Visualization version   GIF version

Theorem elimf 6687
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4547, when a special case 𝐺:𝐴𝐵 is provable, in order to convert 𝐹:𝐴𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
Hypothesis
Ref Expression
elimf.1 𝐺:𝐴𝐵
Assertion
Ref Expression
elimf if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵

Proof of Theorem elimf
StepHypRef Expression
1 feq1 6666 . 2 (𝐹 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐹:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
2 feq1 6666 . 2 (𝐺 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐺:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
3 elimf.1 . 2 𝐺:𝐴𝐵
41, 2, 3elimhyp 4554 1 if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ifcif 4488  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  hosubcl  31702  hoaddcom  31703  hoaddass  31711  hocsubdir  31714  hoaddrid  31720  hodid  31721  ho0sub  31726  honegsub  31728  hoddi  31919
  Copyright terms: Public domain W3C validator