| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimf | Structured version Visualization version GIF version | ||
| Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4564, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
| Ref | Expression |
|---|---|
| elimf.1 | ⊢ 𝐺:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| elimf | ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6691 | . 2 ⊢ (𝐹 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐹:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 2 | feq1 6691 | . 2 ⊢ (𝐺 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐺:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 3 | elimf.1 | . 2 ⊢ 𝐺:𝐴⟶𝐵 | |
| 4 | 1, 2, 3 | elimhyp 4571 | 1 ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ifcif 4505 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: hosubcl 31759 hoaddcom 31760 hoaddass 31768 hocsubdir 31771 hoaddrid 31777 hodid 31778 ho0sub 31783 honegsub 31785 hoddi 31976 |
| Copyright terms: Public domain | W3C validator |