MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimf Structured version   Visualization version   GIF version

Theorem elimf 6658
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4535, when a special case 𝐺:𝐴𝐵 is provable, in order to convert 𝐹:𝐴𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
Hypothesis
Ref Expression
elimf.1 𝐺:𝐴𝐵
Assertion
Ref Expression
elimf if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵

Proof of Theorem elimf
StepHypRef Expression
1 feq1 6637 . 2 (𝐹 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐹:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
2 feq1 6637 . 2 (𝐺 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐺:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
3 elimf.1 . 2 𝐺:𝐴𝐵
41, 2, 3elimhyp 4542 1 if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ifcif 4476  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  hosubcl  31774  hoaddcom  31775  hoaddass  31783  hocsubdir  31786  hoaddrid  31792  hodid  31793  ho0sub  31798  honegsub  31800  hoddi  31991
  Copyright terms: Public domain W3C validator