MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimf Structured version   Visualization version   GIF version

Theorem elimf 6746
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4606, when a special case 𝐺:𝐴𝐵 is provable, in order to convert 𝐹:𝐴𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
Hypothesis
Ref Expression
elimf.1 𝐺:𝐴𝐵
Assertion
Ref Expression
elimf if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵

Proof of Theorem elimf
StepHypRef Expression
1 feq1 6728 . 2 (𝐹 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐹:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
2 feq1 6728 . 2 (𝐺 = if(𝐹:𝐴𝐵, 𝐹, 𝐺) → (𝐺:𝐴𝐵 ↔ if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵))
3 elimf.1 . 2 𝐺:𝐴𝐵
41, 2, 3elimhyp 4613 1 if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ifcif 4548  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  hosubcl  31805  hoaddcom  31806  hoaddass  31814  hocsubdir  31817  hoaddrid  31823  hodid  31824  ho0sub  31829  honegsub  31831  hoddi  32022
  Copyright terms: Public domain W3C validator