![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcfg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
sbcfg | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6546 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | 2 | sbcbidv 3833 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ [𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
4 | sbcfng 6713 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | |
5 | sbcssg 4519 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
6 | csbrn 6201 | . . . . . 6 ⊢ ⦋𝑋 / 𝑥⦌ran 𝐹 = ran ⦋𝑋 / 𝑥⦌𝐹 | |
7 | 6 | sseq1i 4006 | . . . . 5 ⊢ (⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵) |
8 | 5, 7 | bitrdi 287 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
9 | 4, 8 | anbi12d 630 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵) ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵))) |
10 | sbcan 3826 | . . 3 ⊢ ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵)) | |
11 | df-f 6546 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵 ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
12 | 9, 10, 11 | 3bitr4g 314 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
13 | 3, 12 | bitrd 279 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 [wsbc 3774 ⦋csb 3889 ⊆ wss 3944 ran crn 5673 Fn wfn 6537 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: csbwrdg 14518 |
Copyright terms: Public domain | W3C validator |