MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfg Structured version   Visualization version   GIF version

Theorem sbcfg 6644
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 6480 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21a1i 11 . . 3 (𝑋𝑉 → (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
32sbcbidv 3792 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵[𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
4 sbcfng 6643 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
5 sbcssg 4465 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵))
6 csbrn 6145 . . . . . 6 𝑋 / 𝑥ran 𝐹 = ran 𝑋 / 𝑥𝐹
76sseq1i 3958 . . . . 5 (𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)
85, 7bitrdi 287 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
94, 8anbi12d 632 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵) ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)))
10 sbcan 3786 . . 3 ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵))
11 df-f 6480 . . 3 (𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵 ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
129, 10, 113bitr4g 314 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ 𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
133, 12bitrd 279 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  [wsbc 3736  csb 3845  wss 3897  ran crn 5612   Fn wfn 6471  wf 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  csbwrdg  14446
  Copyright terms: Public domain W3C validator