MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfg Structured version   Visualization version   GIF version

Theorem sbcfg 6668
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 6503 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21a1i 11 . . 3 (𝑋𝑉 → (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
32sbcbidv 3806 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵[𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
4 sbcfng 6667 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
5 sbcssg 4479 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵))
6 csbrn 6164 . . . . . 6 𝑋 / 𝑥ran 𝐹 = ran 𝑋 / 𝑥𝐹
76sseq1i 3972 . . . . 5 (𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)
85, 7bitrdi 287 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
94, 8anbi12d 632 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵) ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)))
10 sbcan 3800 . . 3 ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵))
11 df-f 6503 . . 3 (𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵 ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
129, 10, 113bitr4g 314 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ 𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
133, 12bitrd 279 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  [wsbc 3750  csb 3859  wss 3911  ran crn 5632   Fn wfn 6494  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503
This theorem is referenced by:  csbwrdg  14485
  Copyright terms: Public domain W3C validator