MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1 Structured version   Visualization version   GIF version

Theorem ello1 15224
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
ello1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Distinct variable group:   𝑥,𝑚,𝑦,𝐹

Proof of Theorem ello1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5812 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21ineq1d 4145 . . . 4 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
3 fveq1 6773 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
43breq1d 5084 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
52, 4raleqbidv 3336 . . 3 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
652rexbidv 3229 . 2 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
7 df-lo1 15200 . 2 ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}
86, 7elrab2 3627 1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  pm cpm 8616  cr 10870  +∞cpnf 11006  cle 11010  [,)cico 13081  ≤𝑂(1)clo1 15196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-lo1 15200
This theorem is referenced by:  ello12  15225  lo1f  15227  lo1dm  15228
  Copyright terms: Public domain W3C validator