MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1 Structured version   Visualization version   GIF version

Theorem ello1 15536
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
ello1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Distinct variable group:   𝑥,𝑚,𝑦,𝐹

Proof of Theorem ello1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5888 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21ineq1d 4199 . . . 4 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
3 fveq1 6880 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
43breq1d 5134 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
52, 4raleqbidv 3329 . . 3 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
652rexbidv 3210 . 2 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
7 df-lo1 15512 . 2 ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}
86, 7elrab2 3679 1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cin 3930   class class class wbr 5124  dom cdm 5659  cfv 6536  (class class class)co 7410  pm cpm 8846  cr 11133  +∞cpnf 11271  cle 11275  [,)cico 13369  ≤𝑂(1)clo1 15508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-dm 5669  df-iota 6489  df-fv 6544  df-lo1 15512
This theorem is referenced by:  ello12  15537  lo1f  15539  lo1dm  15540
  Copyright terms: Public domain W3C validator