| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ello1 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| ello1 | ⊢ (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5896 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 2 | 1 | ineq1d 4201 | . . . 4 ⊢ (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞))) |
| 3 | fveq1 6886 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 4 | 3 | breq1d 5135 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑦) ≤ 𝑚 ↔ (𝐹‘𝑦) ≤ 𝑚)) |
| 5 | 2, 4 | raleqbidv 3330 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) |
| 6 | 5 | 2rexbidv 3209 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) |
| 7 | df-lo1 15510 | . 2 ⊢ ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚} | |
| 8 | 6, 7 | elrab2 3679 | 1 ⊢ (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3932 class class class wbr 5125 dom cdm 5667 ‘cfv 6542 (class class class)co 7414 ↑pm cpm 8850 ℝcr 11137 +∞cpnf 11275 ≤ cle 11279 [,)cico 13372 ≤𝑂(1)clo1 15506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-dm 5677 df-iota 6495 df-fv 6550 df-lo1 15510 |
| This theorem is referenced by: ello12 15535 lo1f 15537 lo1dm 15538 |
| Copyright terms: Public domain | W3C validator |